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This article presents a snapshot of ongoing efforts to optimize an open-source CFD anal-
ysis and design suite, SU2, for high-performance, scalable Reynolds-averaged Navier-Stokes
calculations using implicit time integration. We focus on performance optimizations with
a particular emphasis on code profiling, the opportunities for parallelism of the software
components, and finding highly-scalable algorithms. Consequently, the resulting code mod-
ifications are geared toward achieving coarse- and fine-grained parallelism for edge-based,
finite volume CFD solvers, making efficient use of memory within a heavily object-oriented
solver, and choosing appropriate algorithms for maximizing parallelism, especially when
solving the linear systems arising from implicit time integration of the governing equa-
tions. All lessons learned are reported for the benefit of both the users and developers
of SU2, as well as the larger CFD community for pursuing performance improvements in
similar analysis and design software packages.

I. Introduction

The solution of Partial Differential Equations (PDEs) is the basis for predictive simulations in Compu-
tational Fluid Dynamics (CFD) that analyze of a wide range of problems, including turbulence, acoustics,
structures, materials, heat transfer, vortical flows, and combustion. CFD simulations run the gamut of
computational expense, from simple, single-processor jobs to highly-complex computations distributed over
millions of processors. Improving the performance of these simulations will allow for more accurate predic-
tions and enable solution methodologies that are currently prohibitively expensive.

The fundamental design challenges faced by conventional single-processor architectures over the past
decade compelled the industry to shift in the direction of increased parallelism with multi- and many-core
architectures. Practitioners are now forced to look at scaling their workloads not only across distributed
memories, but also across large numbers of cores in modern, massively-threaded, shared-memory compute
nodes.

While achieving high-performance on modern hardware has become increasingly difficult, we believe that
not every engineer needs to become an expert on the diversity of architectures populating the market today.
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For over three years, we have developed and supported an open-source project, the SU2 software suite;1,2

an open-source collection of software tools written in C++ for performing CFD analysis and design. It
is built specifically for the analysis of PDEs and PDE-constrained optimization on unstructured meshes
with state of the art numerical methods, and it is particularly well suited for aerodynamic shape design.
The initial applications were mostly in high-speed aerodynamics, but through the initiative of users and
developers around the world, SU2 is now being used to analyze and design flows in incompressible settings
(mechanical and industrial engineering), renewable energy applications (wind turbines and solar collectors),
naval engineering (free surface flows), and even chemical engineering, to name a few. While the framework
is general and meant to be extensible to arbitrary sets of governing equations for solving multi-physics
problems, the core of the suite is a Reynolds-averaged Navier-Stokes (RANS) solver capable of simulating
the compressible, turbulent flows that are characteristic of typical problems in aerospace engineering, and
this will be the focus of the present work.

An unstructured-grid flow solver comprises of a diverse range of kernels with varying compute and
memory requirements, irregular data accesses, as well as variable and limited amount of instruction-, vector-
and thread-level parallelism, which makes achieving high parallel efficiency a very challenging task. In depth
performance studies for such large-scale unstructured grid applications are still relatively limited and a focus
of active research.3,4, 5 A. Duffy et al.6 evaluated leveraging fine-grained parallelism with early GPUs for the
NASA FUN3D code, specifically accelerating only the point implicit solver of FUN3D on GPUs. D. Mudigere
et al.7 have done a detailed exploration of the shared memory optimizations for an unstructured Euler code
benchmark (PETSc-FUN3D) on modern parallel systems and demonstrated significant performance benefits.

As an open-source package, SU2 is uniquely positioned to serve as an example to computational scientists
around the world on how one can achieve high-performance and scalability on advanced hardware architec-
tures. The open-source platform can be leveraged as a testbed for various code optimization strategies and
studies on the implications of algorithmic choices. Furthermore, its open-source nature allows for rapid and
effective technology transfer. In particular, it should be noted that users and developers in the SU2 commu-
nity are already benefitting from a number of improvements in the codebase that were motivated directly
by this research and were implemented and released into the SU2 suite.

Therefore, the overall goal of the present research is to revisit and optimize an established, open-source
CFD analysis and design suite, SU2, from the ground up for execution on modern, highly-parallel (multi- and
many-core) architectures. We will place a particular emphasis on parallelism (both fine- and coarse-grained),
vectorization, efficient memory usage, and identification of the best-suited algorithms for modern hardware.
This article represents a snapshot of our ongoing efforts to optimize SU2 for massively parallel simulations
in several key areas:

1. Code profiling and understanding current bottlenecks.

2. Implementation of coarse and fine grain parallelism approaches (SPMD and SIMD) and efficient mem-
ory usage.

3. Understanding the implications of algorithmic choices on parallelism, especially for solving the linear
systems arising from implicit time discretizations.

The work presented in each of the areas above represents the early progress in a multi-year collaboration
focused on the optimization of the SU2 platform. All lessons learned will be reported for the benefit of both
the users and developers of SU2, as well as those in the larger CFD community that might be pursuing
similar performance improvements. As this is only a snapshot of current progress, we intend for the main
contribution of this article to be the explanation of our overall strategy for assessing the current state of the
code and the subsequent choices for performance improvement. Future work will focus on the performance
of the code in massively parallel settings after implementing a full suite of code optimizations.

The paper is organized as follows. Section II briefly describes the software suite to provide the necessary
background for the subsequent performance optimization strategies. Section III describes our basic approach
for assessing the performance of SU2 and how early profiling and scalability studies have motivated our code
optimization strategy. Sections IV and V contain detailed results and the key conclusions of our work in two
areas: code modifications for improving single-node performance (shared memory performance, memory use,
and vectorization) and assessing the suitability of a number of available linear solvers for representative RANS
calculations (preconditioned Krylov-based methods, classical iterative methods, and multigrid methods).
Finally, Section VI summarizes our key conclusions.
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II. Code Overview

This section briefly introduces the governing equations and selected numerical methods in order to mo-
tivate the chosen optimization strategies for the solver. However, it is important to note that both the
software architecture and the choice of algorithms play large roles in parallel performance. Therefore, we
will consider modifications of the source code as well as algorithmic changes.

A. Governing Equations

SU2 has been designed to solve PDE-based problems defined on a domain Ω ⊂ R3. In particular, the PDE
system resulting from physical modeling of the problem is cast in the following structure:

∂U

∂t
+∇ · ~F c −∇ · (µvk ~F vk) = Q in Ω, t > 0 (1)

with appropriate boundary and temporal conditions that will be problem-dependent. In this general frame-
work, U represents the vector of state variables, ~F c(U) are the convective fluxes, ~F vk(U) are the viscous
fluxes, and Q(U) is a generic source term.

We are concerned with compressible, turbulent fluid flows governed by the Reynolds-averaged Navier-
Stokes equations. Consider the equations in the domain Ω with a disconnected boundary that is divided
into a far-field component Γ∞ and an adiabatic wall boundary S as seen in Fig. 1. For instance, the surface
S could represent the outer mold line of an aerodynamic body. These conservation equations along with the
source term Q can be expressed in differential form as

R(U) = ∂U
∂t +∇ · ~F c −∇ · (µvk ~F vk)−Q = 0 in Ω, t > 0

~v = ~0 on S,

∂nT = 0 on S,

(W )+ = W∞ on Γ∞,

(2)

where the conservative variables are given by U = {ρ, ρ~v, ρE}T, and the convective fluxes, viscous fluxes,
and source term are

~F c =


ρ~v

ρ~v ⊗ ~v + ¯̄Ip

ρE~v + p~v

 , ~F v1 =


·
¯̄τ

¯̄τ · ~v

 , ~F v2 =


·
·

cp∇T

 , Q =


qρ

~qρ~v
qρE

 , (3)

⌦
�1

S
~nS

~n�1

Figure 1. Notional schematic of the flow do-
main, Ω, the boundaries, Γ∞ and S, as well
as the definition of the surface normals.

where ρ is the fluid density, ~v = {v1, v2, v3}T ∈ R3 is the flow
speed in a Cartesian system of reference, E is the total energy
per unit mass, p is the static pressure, cp is the specific heat at
constant pressure, T is the temperature, and the viscous stress
tensor can be written in vector notation as

¯̄τ = ∇~v +∇~vT − 2

3
¯̄I(∇ · ~v). (4)

The second line of Eqn. (2) represents the no-slip condition
at a solid wall, the third line represents an adiabatic condition
at the wall, and the final line represents a characteristic-based
boundary condition at the far-field8 with W representing the
characteristic variables. In addition to the boundary conditions
given in Eqn. (2), the RANS solver in SU2 currently supports
a variety of boundary conditions that make the solver suitable
for both internal and external aerodynamic calculations.

Assuming a perfect gas with a ratio of specific heats, γ, and
gas constant, R, one can determine the pressure from p = (γ−
1)ρ [E − 0.5(~v · ~v)], the temperature is given by T = p/(ρR),
and cp = γR/(γ − 1). In accord with the standard approach to turbulence modeling based upon the
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Boussinesq hypothesis,9 which states that the effect of turbulence can be represented as an increased viscosity,
the total viscosity is divided into a laminar, µdyn, and a turbulent, µtur, component. In order to close the
system of equations, the dynamic viscosity, µdyn, is assumed to satisfy Sutherland’s law10 (function of
temperature alone), the turbulent viscosity µtur is computed via a turbulence model, and

µv1 = µdyn + µtur, µv2 =
µdyn
Prd

+
µtur
Prt

, (5)

where Prd and Prt are the dynamic and turbulent Prandtl numbers, respectively.
The turbulent viscosity, µtur, is obtained from a suitable turbulence model involving the flow state and

a set of new variables. The Spalart-Allmaras (S-A)11 model is one of the most common and widely used
turbulence models for the analysis and design of engineering applications affected by turbulent flows, and it
will be used for any turbulent numerical experiments in this article. This model requires the solution of an
additional scalar PDE sharing the form of Eqn. (1).

B. Numerical Implementation

The following sections contain a brief overview of the numerical implementation strategies for solving PDEs
in SU2. Following the method of lines, the governing equations are discretized in space and time separately.
This decoupling of space and time allows for the selection of different types of schemes for the spatial and
temporal integration. In this article, spatial integration is performed using the finite volume method (FVM),
while integration in time is achieved through implicit discretizations that enable large time steps to alleviate
stiffness in the equations when marching to a steady solution.

1. Spatial Integration via the Finite Volume Method

Partial Differential Equations (PDEs) in SU2 are discretized using a finite volume method12,8, 13,14,15,16,17,18,19

with a standard edge-based structure on a dual grid with control volumes constructed using a median-dual,
vertex-based scheme. Median-dual control volumes are formed by connecting the centroids, face, and edge-
midpoints of all cells sharing the particular node. After integrating the governing equations over a control
volume and applying the divergence theorem, the semi-discretized, integral form of a typical PDE (such as
the RANS equations above) is given by,∫

Ωi

∂U

∂t
dΩ +

∑
j∈N (i)

(F̃ cij + F̃ vkij )∆Sij −Q|Ωi| =
∫

Ωi

∂U

∂t
dΩ +Ri(U) = 0, (6)

where U is the vector of state variables and Ri(U) is the numerical residual representing the integration of
all spatial terms at node i. F̃ cij and F̃ vkij are the projected numerical approximations of the convective and
viscous fluxes, respectively, and Q is a source term. ∆Sij is the area of the face associated with the edge ij,
|Ωi| is the volume of the dual control volume, and N (i) is the set of neighboring nodes to node i.

The convective and viscous fluxes are evaluated at the midpoint of an edge. The numerical solver loops
through all of the edges in the primal mesh in order to calculate these fluxes and then integrates them to
evaluate the residual Ri(U) at every node in the numerical grid. The convective fluxes can be discretized
using centered or upwind schemes in SU2. A number of numerical schemes have been implemented (JST,20

Roe,21 AUSM,22 HLLC,19 Roe-Turkel,23 to name a few), and the code architecture allows for the rapid
implementation of new schemes. Slope limiting is applied within upwind schemes in order to preserve
monotonicity in the solution by limiting the gradients during higher-order reconstruction (second-order with
the MUSCL approach). The slope limiters of Barth and Jesperson24 and Venkatakrishnan25 are popular
limiter options on unstructured meshes.

Since it will be used below to demonstrate code optimization strategies, we give here a brief description
of the JST numerical method for background purposes. The JST scheme approximates the convective flux
using a central difference with a blend of two types of artificial dissipation to maintain numerical stability
by preventing even-odd decoupling of the solution at adjacent nodes. The artificial dissipation terms are
computed using the differences in the undivided Laplacians (higher-order dissipation) of connecting nodes
and the difference in the conserved variables (lower-order dissipation) on the connecting nodes. The two
levels of dissipation are blended based on a pressure switch for triggering lower-order dissipation in the
vicinity of shock waves. The result is a second-order scheme in space. The final expression for the numerical
flux using the JST method on unstructured meshes is:26,27
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F̃ cij = F̃ c(Ui, Uj) = ~F c
(
Ui + Uj

2

)
· ~nij − dij . (7)

The artificial dissipation dij along the edge connecting nodes i and j can be expressed as

dij =
(
ε

(2)
ij (Uj − Ui)− ε(4)

ij (∇2Uj −∇2Ui)
)
ϕijλij , (8)

where the undivided Laplacians ∇2U , local spectral radius, stretching in the grid and pressure switches are
computed as

∇2Ui =
∑

k∈N (i)

(Uk − Ui), (9)

λij =
(
|(~uij − ~uΩij ) · ~nij |+ cij

)
∆S, λi =

∑
k∈N (i)

λik, (10)

ϕij = 4
ϕiϕj
ϕi + ϕj

, ϕi =

(
λi

4λij

)α
, (11)

ε
(2)
ij = κ(2)s2

∣∣∣∣∣∣
∑

k∈N (i)

(pk − pi)

∣∣∣∣∣∣ /
∑

k∈N (i)

(pk + pi)

 , (12)

ε
(4)
ij = s4 max

(
0, κ(4) − ε(2)

ij

)
, (13)

where N (i) represents the set of neighboring points to node i, pi is the pressure at node i, s2 and s4 are
stretching parameters, α is typically set to 0.3, and κ(2) and κ(4) are adjustable parameters (typical values
on unstructured meshes are κ(2) = 0.5 and κ(4) = 0.02).

i j

Primal
Grid

Dual
Grid

⌦i

@⌦i

~nij ⌦j�Sij

edge ij

@⌦j

Figure 2. Dual mesh control volumes sur-
rounding two nodes, i and j, in the domain
interior.

In this work, the convective term for the scalar variable
in the S-A turbulence model is discretized using an upwind
scheme. Typically, a first-order scheme is chosen, but the tur-
bulence variable can also take advantage of a MUSCL approach
and slope limiters in order to obtain second-order accuracy.

In order to evaluate the viscous fluxes using a finite volume
method, flow quantities and their first derivatives are required
at the faces of the control volumes. The gradients of the flow
variables are calculated using either a Green-Gauss or weighted
least-squares method at all grid nodes and then averaged to
obtain the flow variable gradients at the cell faces. Source
terms are approximated at each node using piecewise constant
reconstruction within each of the dual control volumes.

The FVM with a median-dual, cell-vertex scheme, as de-
scribed above, is amenable to an edge-based data structure,
meaning that mesh data (nodal coordinates, face areas, local
normals, etc.) are stored on an edge-by-edge basis. The edge-
based structure offers convenience in the implementation, as a
single loop over the edges in the mesh allows for the numerical
fluxes for each node to be computed. In SU2, a number of
classes exist for encapsulating the various components of the

geometry, such as nodes and edges.
In practice, the numerical residual Ri(U) (we will see that this eventually becomes the right-hand side

for our implicit solve) is evaluated with each nonlinear iteration using a sequence of loops over the edges and
nodes:

1. Loop over all of the edges in the primal mesh in order to calculate the convective and viscous fluxes.

2. Loop over all of the nodes in the primal mesh and compute source terms in each dual control volume
given the current state.
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3. Loop over all of the boundary nodes in the primal mesh in order to impose boundary conditions.

This series of steps results in a value of Ri(U) at each node at a single instance in time, which can then be
substituted into Eqn. (6) and integrated forward in time to either arrive at a steady state or a time-accurate
solution for the state vector U . Additional loops over the edges and grid nodes may appear depending upon
the chosen numerical methods (slope limiters, for example) or for updating the solution at each node after
a nonlinear iteration of the fluid equations, for instance.

2. Time Integration

We now consider the techniques for time-marching the coupled system of ordinary differential equations for
the flow problem represented by Eqn. (6), which is repeated here:

d

dt

∫
Ωi(t)

U dΩ +Ri(U) = 0. (14)

By discretizing the time derivative term, one obtains a fully-discrete finite volume form of the governing
equations. The choice of time-marching method depends on whether a steady state or a time-accurate
solution is desired. In both cases, explicit and implicit methods are available. For simplicity, Eqn. (14) can
be rewritten as

d

dt
(|Ωi|Ui) +Ri(U) = 0, (15)

where |Ωi| =
∫

Ωi(t)
dΩ.

For particularly stiff problems (often the case with the RANS equations on stretched grids with high
aspect ratio cells), the small time step requirement for explicit schemes may become prohibitive, and implicit
methods can be used to improve convergence due to their increased numerical stability. Perhaps the most
common implicit method for steady flows is the backward Euler scheme, where the residual is evaluated
using the solution state at the new time level Un+1. Applying this to Eqn. (15), one has

|Ωi|
∆Ui
∆ti

= −Ri(Un+1), (16)

where time level n corresponds to the known solution in its current state, while time level n+ 1 represents
the new solution state that is being sought after advancing one time step ∆t where ∆t = tn+1 − tn and
∆Ui = Un+1

i − Uni . However, the residuals at time level n + 1 are now a function of the unknown solution
state Un+1 and can not be directly computed. To remedy this, a first-order linearization about time level n
can be performed:

Ri(U
n+1) = Ri(U

n) +
∂Ri(U

n)

∂t
∆tni +O(∆t2)

= Ri(U
n) +

∑
j∈N (i)

∂Ri(U
n)

∂Uj
∆Unj +O(∆t2). (17)

Introducing Eqn. (17) into Eqn. (16), we find that the following linear system should be solved to find the
solution update (∆Uni ): (

|Ωi|
∆tni

δij +
∂Ri(U

n)

∂Uj

)
·∆Unj = −Ri(Un), (18)

where if a flux F̃ij has a stencil of points {i, j}, then contributions are made to the Jacobian at four points,
or

∂R

∂U
:=

∂R

∂U
+



. . .
∂F̃ij

∂Ui
· · · ∂F̃ij

∂Uj

...
. . .

...

−∂F̃ij

∂Ui
· · · −∂F̃ij

∂Uj

. . .


. (19)
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Note that, while implicit schemes offer more stability, the use of approximate Jacobians (first-order) can
impose limits on the allowable time step, especially at the beginning of the solution process when we are not
near the converged solution. However, implicit methods enable the use of higher CFL conditions than with
explicit methods, which translate to the specific values of ∆tni that are used to relax the problem.

For steady problems, a constant time step for all cells is not required, and a local time-stepping technique
can be used to accelerate convergence to a steady state. Local time-stepping allows each cell in the mesh to
advance the solution at a local time step that can be calculated from an estimation of the spectral radii at
every node i according to

∆ti = NCFL min

(
|Ωi|
λconvi

,
|Ωi|
λvisci

)
, (20)

where NCFL is the Courant-Friedrichs-Lewy (CFL) number and λconvi is the integrated convective spectral
radius28 computed as

λconvi =
∑

j∈N (i)

(|~uij · ~nij |+ cij) ∆S, (21)

where ~uij = (~ui + ~uj)/2 and cij = (ci + cj)/2 denote the velocity and the speed of sound at the cell face as
an average of the neighhboring nodes, respectively. The viscous spectral radius λvisci is computed as

λvisci =
∑

j∈N (i)

C
µij
ρij

S2
ij , (22)

where C is a constant, µij is the sum of the laminar and eddy viscosities in a turbulent calculation and ρij
is the density evaluated at the midpoint of the edge ij.

3. Linear Solvers for Implicit Integration

With each nonlinear iteration of the RANS solver, the system in Eqn. (18) is smoothed for some number
of linear iterations or until reaching a prescribed convergence tolerance. Common linear solver choices for
modern solvers include classic iterative methods and preconditioned Krylov methods. Preconditioning is the
application of a transformation to the original system that makes it more suitable for numerical solution.29 In
particular, Jacobi, Lower-Upper Symmetric-Gauss-Seidel (LU-SGS), line implicit (Linelet), and Incomplete
LU (with no fill in, i.e., ILU(0)) preconditioners have been implemented to improve the convergence rate of
the available linear solvers.30,31 Currently, the following two Krylov subspace methods are available in SU2:

• The Generalized Minimal Residual (GMRES) method.32

• The Biconjugate Gradient Stabilized (BiCGSTAB) method.33

In this work, we will mostly focus on the GMRES method.
More recently, a geometric linear multigrid algorithm has also been implemented in SU2 for solving the

linear systems arising from an implicit discretization. The geometric multigrid method generates effective
convergence at all length scales of a problem by employing a sequence of grids of varying resolution. To
illustrate the basic components of linear multigrid, consider solving a linear system on a pair of grids (fine
and coarse) of the form

AΦ = f , (23)

define the error in the solution to be the difference between the solution Φ and the approximation to the
solution Φ̃, or

e = Φ− Φ̃, (24)

where e is the error vector. We can also define a residual vector, which is a measure of how well the discretized
governing equations are being satisfied by our numerical solution procedure, as

r = f −A Φ̃, (25)

where r is our residual vector. We can introduce Eqn. (24) into our original system in Eqn. (23) to give

A
(

Φ̃ + e
)

= f , (26)
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and by introducing Eqn. (25), we recover the following expression:

A e = r, (27)

which relates the error in the solution to the residual. In practical use with multigrid, Eqn. (27) allows
us to compute a measure of the error on coarser mesh levels after transferring the values of the residual
from the fine mesh level onto the coarse level (restriction). Computing this measure of error requires the
selection of a suitable smoother, which is typically a classical iterative method or a Krylov-based method.
After calculating e on a coarse level to satisfy some desired level of convergence, we can form a correction
to the solution on the fine mesh (residual correction) as

Φ = Φ̃ + e, (28)

after we transfer the error back to the fine mesh from the coarse mesh level (prolongation). Furthermore,
we can apply this idea recursively over an entire set of grids of various resolutions to complete an entire
multigrid cycle. We will explain more details about the multigrid algorithm below as part of the discussion
on nonlinear multigrid.

4. Convergence Acceleration via Nonlinear Multigrid

Nonlinear multigrid is often used as a convergence acceleration technique for solving the fluid equations,
regardless of whether an explicit or implicit method is chosen for the time derivative term (i.e., for solving
the outer loop of the nonlinear governing equations).

The key idea of the multigrid algorithm is to accelerate the convergence of the numerical solution of a
set of equations by computing corrections to the fine-grid solutions on coarse grids and applying this idea
recursively.31,34,35 It is well known that, owing to the nature of most iterative methods/relaxation schemes,
high-frequency errors are usually well damped, but low-frequency errors (global error spanning the solution
domain) are less damped by the action of iterative methods that have a stencil with a local area of influence.

An agglomeration Full Approximation Storage (FAS) multigrid has been implemented in SU2. The basic
methodology is described below. Consider the nonlinear problem L(w) = f defined in a domain Ω, and
denote its discretization on a fine grid with spacing h as

Lh(uh) = fh, in Ωh, (29)

where Lh(·) is a nonlinear discrete operator defined in Ωh. The starting point is the definition of a suitable
smoother (e.g. Jacobi, SGS, GMRES, etc.) and, after a small number of iterations of this method (possibly
a single one, instead of fully solving the discrete equation), an approximate solution ūh and residual rh are
obtained on the fine grid. The resulting equation in the fine grid can be written as

Lh(ūh)− fh = rh. (30)

Subtracting equations (29) and (30) we obtain the following expression to be approximated in a coarse
grid:

Lh(uh)− Lh(ūh) = −rh, (31)

where the exact solution uh can be expressed as the approximate solution plus a correction ch yielding:

Lh(ūh + ch)− Lh(ūh) = −rh. (32)

Note that no assumptions about the linearity of the operator L(·) (or its discrete version) are made. As
we stated before, the objective is to write (32) on a coarse grid of spacing H. In order to do that, two types
of restriction operators will be defined: IHh , the restriction operator that interpolates the residual from the
fine grid h to the coarse grid H (in a conservative way), and ĪHh , which simply interpolates the fine grid
solution onto the coarse grid. Formulating (32) on the coarse level by replacing Lh(·) by LH(·), ūh by ĪHh ūh,
and rh by IHh rh, we obtain the FAS equation:

LH(ĪHh ūh + cH)− LH(ĪHh ūh) = −IHh rh. (33)
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In this last expression, by definition, the approximate solution on the coarse grid is denoted as ūH :=
ĪHh ūh+cH , and the residual rh can be written as Lh(ūh)−fh. Finally we obtain the following useful equation
on the coarse level:

LH(ūH) = LH(ĪHh ūh)− IHh (Lh(ūh)− fh). (34)

This last expression can also be simply written as

LH(ūH) = fH + τHh , in ΩH , (35)

where the source term on the coarse levels is interpolated fH = IHh fh (not computed), and a new variable
τHh = LH(ĪHh ūh)− IHh (Lhūh) is defined as the fine-to-coarse defect or residual correction. Note that without
the τHh term the coarse grid equation is the original system represented on the coarse grid.

The next step is to update the fine grid solution. For that purpose the coarse-grid correction cH (which
in principle is smooth because of the application of the smoothing iteration) is interpolated back on to the
fine grid using the following formula

ūnewh = ūoldh + IhH(ūnewH − ĪHh ūoldh ), (36)

where IhH is a prolongation operator that interpolates coarse grid correction to the fine grid. Note that we
interpolate the correction and not the coarse-grid solution itself.

In this brief introduction to the method, only two grids have been considered. In real problems, however,
the algorithm is applied in a recursive way using different grid level sizes to eliminate the entire spectrum
of frequencies of the numerical error. In order to summarize the method, the basic multigrid algorithm is
presented in pseudo-code below:

Algorithm FAS Multigrid
1. if k = 1
2. then solve Lk(uk) = fk directly
3. for l← 1 to ν1

4. do Pre-smoothing steps on the fine grid:

5. u
(l)
k ← S(u

(l−1)
k , fk)

6. Computation of the residual: rk ← fk − Lk(w
(ν1)
k )

7. Restriction of the residual: rk−1 ← Ik−1
k rk

8. uk−1 ← Īk−1
k u

(ν1)
k

9. fk−1 ← rk−1 + Lk−1(uk−1)
10. Call γ times the FAS scheme to solve Lk−1(uk−1) = fk−1 using a V cycling strategy

11. Coarse-grid correction: unewk ← u
(ν1)
k + Ikk−1(uk−1 − Īk−1

k u
(ν1)
k )

12. for l← 1 to ν1

13. do Post-smoothing steps on the fine grid:

14. u
(l)
k ← S(u

(l−1)
k , fk)

Because of their structured-grid heritage, multigrid methods have traditionally been developed from a
geometric point of view. In this particular implementation, a geometric agglomeration multigrid method has
been used. This strategy consists in choosing a seed point (a node in a vertex-based code such as SU2), which
initiates a local agglomeration process whereby the neighboring control volumes are agglomerated onto the
seed point. The topological fusing for the agglomeration multigrid method is a fundamental component of
the algorithm: a number of priorities and restrictions are imposed on the agglomeration process to ensure
high quality (maximum number of points, volume, ratio surface/volume, boundary incompatibilities, etc.).
The most important advantage of the agglomeration technique is that it is not necessary to physically create
independent meshes on the coarse levels: this task can be completely automated.

To avoid confusion, it is important to note the differences between the nonlinear (FAS) multigrid algorithm
described here and the linear multigrid algorithm described above for solving a linear system. The nonlinear
multigrid algorithm requires that the residual vector and Jacobian matrix of the problem (i.e., the matrix
and right-hand side of the linear system) are recomputed on each level before smoothing occurs. In the
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linear multigrid case, the residual vector and Jacobian matrix are computed once at the beginning of each
nonlinear iteration of the equations and held fixed during the smoothing and traversal of the multigrid levels.
In SU2, we leverage the same agglomeration techniques, restriction operators, and prolongation operators
for both the linear and nonlinear multigrid methods.

III. Approach to Code Optimization

The first step in our approach was to create a new C++ module named SU2 PHI, which contains a
stripped down version of the main SU2 suite in a standalone executable. More specifically, this module
contains the entire RANS solver found in the SU2 CFD module, including the mesh partitioning and MPI
routines needed for parallel execution on distributed memory clusters. The motivation for SU2 PHI was the
need for a light-weight environment in which to prototype the various modifications to the code and new
algorithms while maintaining all of the necessary physics and the complexity of the full software architecture.

With SU2 PHI, we could then select a number of representative problems from aeronautics and begin
the process of improving the performance and scalability of SU2 by performing a detailed code profiling
and initial scalability tests. Through these tests, we can appropriately prioritize the routines that should
receive attention based on their workload and potential for improved parallelization. In general, additional
parallelization of routines will be pursued where possible through typical approaches (decomposition, vec-
torization, etc.), but ameliorating some bottlenecks in parallelization may require algorithmic changes.

The key challenge during all performance optimizations will be to maintain open-source customizability of
the source code while maximizing performance and scalability. Code readability and ease of modification are
critical features to our user base (object-oriented C++), and portability and hassle-free installation must be
maintained. Traditionally, we have avoided the inclusion of third-party libraries in lieu of optimized, in-house
solutions. However, we may need new interfaces to external packages in order to achieve the performance
improvements that we seek.

A. Problem Selection

The following representative problems from aeronautics have been selected for our numerical studies:

1. Compressible, turbulent flow around the NACA 0012 airfoil (2D).

2. Transonic, inviscid flow over the ONERA M6 wing (3D).

3. Transonic, turbulent flow around the RAE 2822 airfoil (2D).

4. Transonic, turbulent flow over the NASA Common Research Model (CRM) aircraft configuration (3D).

These are some of the most widely used geometries for verification and validation of CFD codes, and these
geometries have a wealth of data available from experiment and also other codes for comparison. Another
key component in selecting these configurations is the fact that we have several series of grids with varying
resolutions for performing numerical experiments at different scales while maintaining sufficient work per
core (from single-node calculations up to large-scale, distributed calculations using thousands of MPI ranks).

B. Code Profiling and Initial Scalability Tests

Apart from using other available profiling tools, we have implemented a custom profiling capability within
SU2 PHI. This capability allows for the gathering of statistics on routines such as total number of calls,
minimum or maximum time for any one call, or the average time of each call to the routine. In addition,
the profiling routines are MPI-aware so that information can be gathered for each rank in a calculation
independently. Lastly, routines can be tagged with particular identifiers during profiling in order to organize
the output so that routines are grouped by their level in the software stack or in a different manner chosen
by the user.

Fig. 3 contains initial code profiling and scalability results for the baseline version of SU2 PHI. As
expected for an unstructured, edge-based, implicit CFD solver, such as the structure described above for
SU2, almost all of the computational work is found in the following:

• Edge loops/point updates (convective and viscous fluxes, time steps, slope limiters, etc.)
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(a) Single-node profiling results. (b) Initial scalability results.

Figure 3. Profiling and initial scalability results for the baseline version of SU2 PHI.

• Linear solvers (approximate factorization, preconditioning and back-substitution - sparse linear alge-
bra)

• Global collectives (vector inner products and norms, marked as MPI in Fig.3)

The majority of the execution time is spent in the edge-based loops (the “physics” of the application)
and the linear solver (sparse, narrow-band recurrences). The collectives typically have very little floating
point work and involve a logarithmically deep succession of messages to traverse the subdomains of the
partition. In the distributed memory context, edge-based loops are bound by the inter-node bandwidth if
the latter does not scale with the architecture. Inner products are bound by the inter-node latency and
network diameter. However, the single node (shared-memory) challenges are different, and are described in
the next section for both edge-based loops and recurrences.

1. Edge-based Loops

This comprises the stencil computations over all the edges and the associated vertices. These loops predomi-
nantly occur in residual vector (flux) calculation, Jacobian matrix evaluation, and Jacobian-vector products.
Typically, these loops have color-wise concurrency and local communication to complete the edges cut by
the mesh partitioning for distributed calculations. A typical edge-based loop is depicted in Listing. 1. These
edge loops contribute to the majority of the floating-point operations and hence are expected to be bound by
available compute on the processor. Being compute-bound, we expect these loops to scale with the increasing
compute (nodes), and with our initial scaling studies, we see that these loops have near-linear performance
scaling. However, the key challenges in achieving the potential performance is: 1) Extracting thread- and
SIMD-level parallelism in the presence of loop-carried dependencies, due to vertices shared by multiple edges,
and 2) Exploiting SIMD-level parallelism in the presence of irregular memory accesses.

2. Linear Solvers

This consists of sparse linear algebra kernels that are generally characterized by sparse, narrow-band re-
currences. These operations have limited parallelism, proportional to the number of independent edges.
Also, the compute intensity is quite low, making these operations memory intensive and typically bound by
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the memory bandwidth. Furthermore, due to the varying amount of parallelism these operations are also
plagued by significant amounts of load imbalance when parallelized.

Currently, the block-CSR storage format (BCSR) is used in SU2 for storing the Jacobian matrix with
the block size being the number of unknowns per vertex (5× 5). Using BCSR has significant benefits, since
it allows for coalesced loads (4 cache lines per block), reduces the index computation, and also alleviates the
memory bandwidth pressure

IV. Single-node Performance Optimizations

In this section, we will describe the various code changes we make to improve the single-node performance
for a given workload. These fine-grained optimizations can be grouped into three major categories:

• Code hybridization to MPI + OpenMP to take advantage of shared-memory resources. This also helps
in reducing the overall memory requirement.

• Efficient memory use. This includes three things: Firstly, re-ordering the edges of the unstructured
mesh using a Reverse Cuthill-Mckee (RCM) algorithm to reduce the bandwidth of the edge adjacency
matrix. Secondly, doing a smart memory allocation for objects such that contiguous blocks of memory
can be allocated for them. And lastly, array-of-structures to structures-of-arrays (AOS to SOA) type
transformations. All these help in compacting the memory access footprint for any function such that
the cache miss rate can be reduced.

• Vectorization. Vectorization is of fundamental importance in getting the performance out of modern
computer architectures.

For the results presented in this section, we select an inviscid, transonic ONERA M6 workload together
with Runge-Kutta (RK) explicit time-stepping scheme. This forms a building-block for more involved tur-
bulent and implicit time-stepping simulations, and at the same time retains the edge-loops which form the
top hotspots for any other workload. Moreover, since this forms the bare-bones of the SU2 solver, it has
one of the lowest overall compute intensities (compute flops per byte of memory accessed) and as such it
is most difficult to optimize (apart from the complications associated with the linear solver for an implicit
time-stepping case). If any other extra modules are added (such as turbulence or finite-rate chemistry) the
compute intensity should increase driving the performance higher.

In the next subsections, we give a detailed description of the optimizations mentioned above and present
performance results for two different unstructured (tetrahedral) meshes: small mesh (94,493 grid points),
and large mesh (818,921 grid points). Performance results for both Intelr Xeonra and Intelr Xeon Phi™a

architectures are presented.

A. OpenMP (OMP) Approach

Here we will be discussing our OpenMP approach. OpenMP can be implemented in a couple of ways:

• Loop-level OMP parallel regions. This is easy to implement as one can incrementally add OMP
parallelization. Also, this is less error prone due to implicit barriers at the end of the parallel regions.
However, this incurs a large fork-join overhead as the number of parallel regions are usually pretty
high.

• High-level, functional, OMP approach. This approach involves a single OMP parallel region at a very
high-level in the program. This approach looks similar to MPI domain decomposition. Here, the
iteration space for edge loops is pre-divided by coloring the edges such that one color belongs to a
given OMP thread. This way one can even avoid OMP atomics by pre-assigning the “owner” thread
for a vertex which is shared between the edges. One can use OMP dynamic scheduling instead of
pre-dividing iteration space if the load-imbalance is substantial. This approach is more difficult to
implement and is more error prone because all the synchronizations need to be explicitly managed by
the developer. However, this approach offers better performance when implemented carefully.

aIntel Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
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We implemented both the OMP approaches described above. However, we retained the latter approach as
it out-performed the former.

Figs. 4(a) and (b) show the OpenMP strong-scaling for Xeonr and Xeon Phi™, respectively. Note that
hyperthreading is enabled for Xeonr such that 2 OMP threads are affinitized (compactly) to a physical
core for Xeonr. 4 OMP threads are affinitized (again compactly) to a physical core for Xeon Phi™ to take
advantage of the 4 hardware-threads per physical core. This helps hide the latency associated with in-order
execution on a Xeon Phi™ core. The results are shown for the two meshes, i.e., small and large. For Xeonr
we see that maximum scaling achieved is 11.06x for the small mesh and 12.28x for the large mesh. For Xeon
Phi™ the corresponding numbers are 31.72x and 44.28x. The large mesh shows better scaling compared to
the small mesh because the effects of OMP load-imbalance reduce as the amount of compute increases. This
is even more so for Xeon Phi™ as the number of OMP threads is higher.
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Figure 4. OpenMP strong scaling. As indicated, 2 OMP threads are affinitized to a physical core for Xeonr
and 4 OMP threads are affinitized to a physical core for Xeon Phi™. Compact affinity is used in both cases.

Next, we describe in more detail our OpenMP implementation. The top hotspots for the inviscid mean
flow workload with explicit R-K time integration consists of essentially the edge-loops related to the convec-
tive flux calculation:

1. SetMax EigenValue

2. SetUndivided Laplacian

3. SetDissipation Switch

4. Centered Residual

Out of these 4 hotspots, the first three compute the various auxiliary parameters required for JST flux
residual (see Section II) computation, which gets computed in the fourth function, Centered Residual. One
optimization was to combine the second and third function into one to take advantage of the temporal
cache-locality. Since they share some of the memory accesses, it makes sense to bring the data from memory
once and compute on it as much as possible. This new function is called Set UndLapl DissSwitch.

A typical edge-loop in any of these functions looks like Listing 1. The structure corresponds to a gather-
compute-scatter method, in that for each loop iteration, data is gathered from the corresponding vertices
of the edge, some compute is performed using data from both vertices, and the results of compute are
scattered back to the vertices. The SetMax EigenValue and Set UndLapl DissSwitch are characterized by a
low compute intensity. The Centered Residual on the other hand has a very high compute intensity. When
one uses OpenMP to parallelize this edge-loop, a write-contention arises (during the scatter step) whenever
the vertex (iPoint or jPoint) is shared by two edges that are assigned to different OMP threads. This
write-contention is taken care of by either using OMP atomics or by pre-assigning the vertex to a particular
“owner” thread.
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Listing 1. Typical Edge-loop in SU2

for (iEdge = 0; iEdge < geometry->GetnEdge(); iEdge++) {

{

//Gather data from end-points of iEdge

iPoint = geometry->edge[iEdge]->GetNode(0);

jPoint = geometry->edge[iEdge]->GetNode(1);

ProjVel_i = node[iPoint]->GetProjVel();

ProjVel_j = node[jPoint]->GetProjVel();

. . .

//Do some compute

Mean_ProjVel = 0.5 * (ProjVel_i + ProjVel_j);

Mean_SoundSpeed = 0.5 * (SoundSpeed_i + SoundSpeed_j) * Area;

Lambda = fabs(Mean_ProjVel) + Mean_SoundSpeed;

//Scatter the results to end-points of iEdge

//Here we are updating Lambda at iPoint and jPoint

//This is where there is write-contention as iPoint and/or jPoint are shared between different

iEdges

node[iPoint]->AddLambda(Lambda);

node[jPoint]->AddLambda(Lambda);

}

In order to define the owner for each of the edges, we purse a decomposition approach that mimics the
type of coarse-grain parallelism typically seen with distributed memory applications with MPI. This approach
has been successfully implemented in the literature.4,7 Rather than use a classic coloring technique, each
thread is given a subdomain that results from a decomposition of the underlying edge graph. The METIS
software package is used to complete the partitioning. An example for an unstructured NACA 0012 mesh is
shown in Fig. 5.

Decomposing the edge graph balances work by evenly distributing edges while minimizing dependencies
at shared nodes (the “edge cuts” of the edge graph). In order to eliminate contention at the shared nodes, all
edges that touch a shared node are replicated on each thread that shares the node. The appropriate structures
for these repeated edges are then added to the code to eliminate contention, and the result is similar to a
halo layer approach in a distributed memory application. The subdomains can then be further reordered,
vectorized, etc. The key concept is that there will be redundant compute (each thread computes quantities
along all of the edges that it owns, including repeats), but only one of the threads will be considered the
owner of repeated edges and perform data writes. A basic load balancing is performed by assigning ownership
of repeated edges/nodes in a greedy manner to the thread with the least owned edges.

There arises one conflicting requirement. For optimal load-balancing, we would like to use one of the dy-
namic scheduling options in OpenMP (such as dynamic, guided, or auto). However, with dynamic scheduling
it is not possible to pre-assign an “owner” thread and therefore one cannot get rid of atomics when doing
the vertex update. Thus, the edge-loops for which load-balancing is critical we choose dynamic scheduling
(in our case we choose auto OMP scheduling in particular), and for loops where there are large number
of vertex updates (requiring too many atomics) we choose static scheduling using the pre-defined “owner”
thread approach. In particular, for Set UndLapl DissSwitch we choose the latter approach and for the rest
we do dynamic scheduling. This is because the Set UndLapl DissSwitch function requires atomic updates
for all solution variables at the shared vertex, and hence, the total cost of atomics is very high. For Set-
Max EigenValue, we choose auto OMP scheduling because just two OMP atomics are required for every iEdge
iteration. For Centered Residual we again choose auto OMP scheduling as load-balancing is critically impor-
tant for this function. To summarize, we use a combination of dynamic scheduling and static-scheduling for
different edge-loops to optimize and balance the atomics cost and the load-imbalance cost. The performance
gains obtained by adding dynamic scheduling are presented later in this section.
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(a) Zoom view of edges in an unstructured mesh around the
NACA 0012 airfoil.

(b) Domain decomposition of the edge graph. Each color rep-
resents a single domain.

Figure 5. An example of the decomposition of the edge graph. Each OMP thread is assigned a subdomain.

B. Improving Memory Performance

A number of approaches are typically followed when attempting to improve memory performance, and specific
techniques will be described here as implemented in SU2 PHI. In general, the idea is to apply optimizations
in order to improve the spatial and temporal locality of data. Three particular techniques for improving
data locality are edge/vertex reordering, a smarter allocation for class objects, and lastly changing the data
structures from array-of-structures (AOS) to structures-of-arrays (SOA) (see Ref.36). These are described
next in detail.

The first approach for memory optimization is a reordering of the nodes (unknowns) to minimize cache
misses. This is accomplished via a Reverse Cuthill-McKee (RCM) algorithm that minimizes the bandwidth
of the resulting problem. Edge renumbering has been performed based on a strategy in previous literature.37

The mesh edges have been ordered according to points, i.e., the first edge-point (first index) increases
monotonically as one progresses through the edges. We also minimize the jump in the second edge-point
(second index). The idea is to keep the second edge-point that minimizes the jump with respect to the
previous edge. In this manner, as the code traverses the edges and accesses the data at the edge end points,
the memory is accessed in a cache-efficient manner, which leads to notable performance gains. In effect,
by using RCM, we reduce the overall bandwidth of the adjacency matrix38 of the unstructured mesh. An
adjacency matrix essentially shows the edge connections in an unstructured mesh. The rows and columns
of this matrix are vertices and a non-zero entry in the matrix means that the vertices are connected by
an edge. This can be seen in Figs. 6(a) and (b) which show the adjacency matrix before and after the
RCM transformation, respectively. The matrix bandwidth reduces from 170,691 to 15,515 by applying RCM
re-numbering for the smaller tetrahedral ONERA M6 mesh.

The second approach for improving memory performance involves reworking some of the class structure
in SU2 PHI in order to support more parallelization- and cache-friendly initializations of class data. For
example, the CNumerics class has been modified so that the parent class is purely virtual with no class
data, while the child classes allocate all of the data that is necessary for computing fluxes along the edges.
This leads to a speed up of the code and also simplifies the parallelization of the flux loops using OpenMP.
Another example is an improved memory allocation approach for the variables that are stored at each node
(our unknowns) within the CVariable class. Here, we guarantee that memory for the objects is allocated in
a contiguous array (in C-style), rather than using typical C++ allocations.

Lastly, another major memory optimization performed is a change in class structure from AOS to SOA.
Listings 2 and 3 illustrate the basic concept. In the AOS case, the CSolver class contains a double pointer
of an object of the CVariable class, node. The CVariable class contains the variables at a given vertex of the
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(a) Before RCM (b) After RCM

Figure 6. Effect of RCM re-numbering on the edge adjacency matrix of the ONERAM6 mesh.

Listing 2. Array of Structures

class CSolver {

CVariable** node;

. . .
}

class CVariable {

double* Solution;

double* Undivided_Laplacian;

double ProjVel;

double Lambda;

. . .
}

mesh. In doing so, the variables (for example, Lambda) at neighboring vertices are not stored contiguously
in memory. This increases the cache-miss rate as one traverses the edge-loop. On the other hand, in the
SOA case, we do not make a reference to the object of the CVariable class. The CSolver class here contains
pointers for each of the variables directly. These pointers store the corresponding variables for all the vertices
of the mesh in a contiguous fashion. This reduces the memory access footprint and significantly improves the
cache use efficiency. The typical edge-loop for an SOA case, looks like Listing 4 (in contrast with the AOS
case in Listing 1). Note that, by implementing the AOS to SOA transformations, we do lose some flexibility
in the code. One can no longer pick and choose a different type of the CVariable object to combine with
a given CSolver class. Thus, there is a tension between performance and flexibility and one must balance
these as required. In the present setup, the AOS to SOA transformations are coded using pre-processor
directives such that the user can compile with AOS to SOA enabled if they desire better performance. The
performance benefits of AOS to SOA are also quantified later in this section.

C. Vectorization

Vectorization is extremely critical for achieving high performance on modern CPUs as well as co-processors.
The Intelr Xeonr, formerly codenamed “IvyBridge,” processor is used in this study. In addition to scalar
units, it has 4-wide double-precision (DP) SIMD units that support a wide range of SIMD instructions
through Advanced Vector Extensions(AVX).39 In a single cycle, they can issue a 4-wide DP floating-point
multiply and add to two different pipelines. The Intelr Xeon Phi™ Co-processor, formerly codenamed
“KnightsCorner,” used in this study has 8-wide DP SIMD units for vector instructions. Thus, in theory, one
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Listing 3. Structures of Arrays

class CSolver {

double* Solution_all;

double* Undivided_Laplacian_all;

double* ProjVel_all;

double* Lambda_all;

. . .
}

Listing 4. Typical Edge-loop in SU2 after AOS to SOA transformations

for (iEdge = 0; iEdge < geometry->GetnEdge(); iEdge++) {

{

//Gather data from end-points of iEdge

iPoint = geometry->edge[iEdge]->GetNode(0);

jPoint = geometry->edge[iEdge]->GetNode(1);

ProjVel_i = ProjVel_all[iPoint];

ProjVel_j = ProjVel_all[jPoint];

. . .

//Do some compute

Mean_ProjVel = 0.5 * (ProjVel_i + ProjVel_j);

Mean_SoundSpeed = 0.5 * (SoundSpeed_i + SoundSpeed_j) * Area;

Lambda = fabs(Mean_ProjVel) + Mean_SoundSpeed;

//Scatter the results to end-points of iEdge

//Here we are updating Lambda at iPoint and jPoint

//This is where there is write-contention as iPoint and/or jPoint are shared between different

iEdges

Lambda_all[iPoint] += Lambda;

Lambda_all[jPoint] += Lambda;

}
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can achieve a 4x and 8x speedup over scalar code for double-precision compute on a Xeonr processor and
a Xeon Phi™ co-processor, respectively. Thus, vectorization is even more important for the co-processor.

Here, we describe the vectorization strategy for the Centered Residual function that computes the con-
vective flux residual using the JST scheme. As mentioned before, this function has a very high compute
intensity and therefore is a great candidate for vectorization. We implement an outer-loop vectorization,
where vectorization is achieved by computing on multiple edges simultaneously in multiple SIMD-lanes. The
pseudo-code for the vectorized kernel is shown in Listing 5. Note that loop-tiling is done to implement
vectorization. The first ivec loop computes the required input parameters for residual computation for a set
of VECSIZE edges. The second ivec loop calls the ComputeResidual function on the set of VECSIZE edges
simultaneously. The function ComputeResidual is a vector or “Elemental Function.” Elemental Functions
are a feature of the Intelr compilers,40 and they are defined by adding a attribute ((vector)) clause before
the function definition.40 The variable VECSIZE is made equal to the number of DP SIMD-lanes available
in the architecture (4 for Xeonr and 8 for Xeon Phi™).

It is critically important that the parameters passed into the elemental function are accessed in a unit-
strided way for different values of the loop iteration index (ivec). 1-D array (or single pointer) parameters,
such as Neighbor i/ j and Lambda i/ j, are copied into static arrays of size VECSIZE as shown in the
Listing 5. To achieve this for two-dimensional arrays (or double pointers), the inner-dimension of these
arrays should be the ivec dimension, and its size must be equal to VECSIZE (for C language storage
convention), as shown for Normal vec. The linear clause in the elemental function definition implies that the
variable varies linearly with the loop iteration index. The uniform clause specifies that these variables are
constant for all the loop iterations and can be broadcasted once to all SIMD-lanes. For further description
and additional clauses which are available in elemental functions, the reader is referred to the Intel Compiler
Reference Manual.40 The performance gains obtained by vectorizing this kernel are presented in the next
sub-section.

D. Performance Results on Xeonr and Xeon Phi™

Now, we present the performance results obtained by adding all of the optimizations described above. The
tests are performed on Xeonr and Xeon Phi™ (native execution). Native execution on Xeon Phi™ co-
processor means that the code binaries are compiled for direct execution on the co-processor, and the host
is not involved at all in the computation. The machine and tools configuration is given in Table 1.

Host with
Xeonr
Processor

Intelr Xeonr E5-2697v2 (formerly codenamed “IvyBridge”) 2.70 GHz, 2 x 12 cores
(dual-socket workstation), 64GB DDR3 1600 MHz RAM, Hyper-Threading (HT)
enabled

Xeon Phi™
Co-processor

Intelr Xeon Phi™ C0-7120A, 1.238 GHz, 61 cores, 16 GB GDDR5 RAM, Turbo
enabled

Tools Intelr Composer XE 2015 (beta)

Table 1. Machine and tools configuration.

Figs. 7(a) and (b) show the speedup obtaind by adding various optimizations for Xeonr and Xeon Phi™,
respectively. Results for both the small and large ONERA M6 meshes are shown. The simulation is run for
100 nonlinear iterations, and the time per iteration for the 100th iteration is taken as the performance metric.
Let’s first look at the Xeonr results. The speedup is shown relative to the Base (MPI only) code. The Base
code is run with 48 MPI ranks utilizing all 24 physical cores (48 ranks since HT is enabled). We first note that
hybridization to MPI+OpenMP improves the performance by 1.11x for the small mesh. However, it does not
make a difference for the large mesh. This is because the small mesh is more sensitive to memory latencies,
and by hybridization, we are able to make better use of the shared-memory resources using OpenMP. For
the large mesh there is enough compute to hide some of these latencies and hence there is not a significant
speedup from hybridization. The hybrid runs are performed with 4 MPI ranks and 12 OMP threads per
MPI rank (again utilizing all 24 physical cores). This same configuration is used for all the hybrid runs. As
we add RCM, we see quite a big speedup for the small mesh. This is because RCM improves the cache-hit
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Listing 5. Pseudo-code for Centered Residual and elemental function ComputeResidual to show vectorization

//Centered_Residual function

void Centered_Residual(CGeometry *geometry, . . .) {

double Lambda_i_vec[VECSIZE];

double Lambda_j_vec[VECSIZE];

unsigned short Neighbor_i_vec[VECSIZE];

unsigned short Neighbor_j_vec[VECSIZE];

double Residual_vec[MAX_NVAR][VECSIZE];

double Normal_vec[3][VECSIZE]; //for 3-D and 2-D simulations

double *normal_temp;

for (iEdge = 0; iEdge < nEdges; iEdge += VECSIZE) {

for (ivec = 0; ivec < VECSIZE; ++ivec) {

//obtain variables required for computing the residuals

normal_temp = geometry->edge[iEdge_vec]->GetNormal();

for (iDim = 0; iDim < nDim; ++iDim) {

Normal_vec[iDim][ivec] = normal_temp[iDim];

}

Neighbor_i_vec[ivec] = geometry->node[iPoint]->GetnNeighbor();

Neighbor_j_vec[ivec] = geometry->node[jPoint]->GetnNeighbor();

Lambda_i_vec[ivec] = Lambda_all[iPoint];

Lambda_j_vec[ivec] = Lambda_all[jPoint];

. . .
}

//Call the elemental function on VECSIZE number of iEdges simultaneously

#pragma simd vectorlength(VECSIZE)

for (ivec = 0; ivec < VECSIZE; ++ivec) {

numerics_local_vec[0]->ComputeResidual(ivec, Residual_vec, Normal_vec, Lambda_i_vec,

Lambda_j_vec, Neighbor_i_vec, Neighbor_j_vec, . . .);
}

}

} //end of Centered_Residual

//ComputeResidual Elemental Function

attribute ((vector(vectorlength(VECSIZE), linear(ivec:1), uniform(val_residual, val_normal,

Lambda_i_vec, Lambda_j_vec, Neighbor_i_vec, Neighbor_j_vec, this))))

void ComputeResidual( int ivec, double val_residual[][VECSIZE], double val_normal[][VECSIZE],

double Lambda_i_vec[], double Lambda_j_vec[], unsigned short Neighbor_i_vec[], unsigned short

Neighbor_j_vec[], . . .)
{

\\Compute the Residual

}
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rate as described earlier. It is interesting to note that the speedup is actually negative for the large mesh
case. This requires further investigation and is not within the scope of this paper. As we further add AOS
to SOA transformations, a very noticeable jump in speedup is obtained for both small and large meshes. It
can be seen that this is the most productive optimization. By adding auto OMP scheduling we get more
speedup (more so for the small mesh again because it is more sensitive to load-imbalance among threads).
Finally, by adding vectorization, we get about 10% overall speedup for both small and large meshes. Note
that this is a significant gain from vectorization given the fact that only a single kernel (Centered Residual)
was vectorized. The other hotspots were not vectorized because of their low compute intensities in which
case vectorization will not help much. After all the optimizations, 2.22x and 1.73x overall speedup was
obtained over the Base (MPI only) code for small and large mesh, respectively.

Next, we present the Xeon Phi™ co-processor results. The code was executed natively on the co-processor
with no host involvement. Overall, the picture for Xeon Phi™ looks similar to Xeonr. This is a big advantage
of Xeon Phi™: one does not need to write and maintain different codebases for host and co-processor. The
optimizations done to improve host performance help quite a bit in improving the co-processor performance
and vice-verca.

In this case, the Base (MPI only) run was done using 240 MPI ranks utilizing 60 physical cores (240
ranks because Xeon Phi™ has a four hardware threads per core). The hardware threads help to hide latencies
associated with the in-order instruction execution on the co-processor. Notice that there is a huge speedup
obtained by hybridizing the code for both small mesh and large mesh. The speedup is much more than the
corresponding numbers for Xeonr. For all hybrid runs, 4 MPI ranks and 60 OMP threads per MPI rank
were used (utilizing 60 physical cores). Adding RCM speeds up the small mesh but slows down the large
mesh case somewhat. This is similar to Xeonr results. Adding AOS to SOA transformations gives a good
boost to speedup for both meshes. The AOS to SOA percentage speedup is less for Xeon Phi™ compared
to Xeonr. Adding auto OMP scheduling helps a lot on Xeon Phi™ (more than Xeonr) due to the large
number of OMP threads on Xeon Phi™. Further, addition of vectorization takes the total speedup for small
mesh to 3.53x and large mesh to 2.95x, compared to the base (MPI only) case. Vectorization gains about
17% for small mesh and about 25.5% for the large mesh. This is more than double the gain compared to
Xeonr, which is expected because of the twice-wide SIMD-lanes in Xeon Phi™compared to Xeonr. In
summary, we note that hybridizing with good OpenMP scaling and vectorization are critically important to
get performance out of the Xeon Phi™ co-processor.
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Figure 7. Fine-grained single-node optimizations.
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Finally, we look at absolute performance comparisons between Xeonr and Xeon Phi™. A full suite of
hybrid runs are conducted on both architectures for small and large meshes. The number of MPI ranks is
varied from 1 to 48 for Xeonr and 1 to 240 for Xeon Phi™, and the corresponding OMP threads per MPI
rank is varied such that the product of no. of MPI ranks and no. of OMP threads per MPI rank is 48 for
Xeonr and 240 for Xeon Phi™. This keeps the machines fully subscribed. Figs. 8 and 9 show the results
for Xeonr and Xeon Phi™, respectively. These runtimes (time per iteration) are for the code which has
all the optimizations presented earlier. A lower time per iteration signifies better performance. First, let’s
look at the Xeonr results in Fig. 8. The small mesh results show poor performance at either end of the
spectrum. A sweet spot is obtained for 2 to 6 MPI ranks. The percentage of total variation in runtime
(relative to largest runtime) for the small mesh is about 27% and for the large mesh is about 32%. For the
large mesh, we note that the pure OpenMP mode (single MPI rank) performs very poorly compared to other
configurations. There is also less variation in runtime if number of MPI ranks is more than one. Also, the
best performance is obtained for 6 MPI ranks (with 8 OMP threads attached to each rank).

Next, we present the Xeon Phi™ results in Fig. 9. For both meshes, we see that the worst performance
(highest runtime), by a large margin, is obtained for a pure MPI case (240 MPI ranks). For the small
mesh, we see best performance for a pure OpenMP code (single MPI rank), whereas for large mesh, the
best performance is obtained for 2 MPI ranks. The total amount of variation in runtimes (relative to largest
runtime) is about 68% for the small mesh and 57% for the large mesh. This shows that Xeon Phi™ is
much more sensitive to the hybrid run configuration compared to Xeonr. One needs to carefully choose
the right configuration (which is different on the two architectures) for optimal performance. This is even
more important when we run in symmetric mode (i.e. the workload is divided by placing MPI ranks on both
Xeonr and Xeon Phi™simultaneously) to achieve a good load balance between them.

Note that for small mesh, the best Xeonr runtime is 0.049 sec, and the best Xeon Phi™ runtime is 0.157
sec (i.e., 3.2x of Xeonr). For the large mesh, the best Xeonr runtime is 0.369 sec, and the best Xeon Phi™
runtime is 0.991 sec (i.e., 2.69x of Xeonr). Thus, the absolute performance gap between Xeonr and Xeon
Phi™ reduces as the mesh size increases. Even with a lower performance of Xeon Phi™ compared to Xeonr,
the co-processor can still speedup the host run when added to the host by running in symmetric mode. For
this, one must carefully divide the workload between host and the co-processor. Ongoing and future work is
on further optimizing the Xeon Phi™ code.
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Figure 8. Intelr Xeonr Hybrid MPI/OpenMP runtimes for the small and large meshes.

V. Linear Solver Assessment for the Implicit Solution of the RANS Equations

In this section, we investigate a number of options and settings for linear solvers that are suitable for
solving the RANS equations. More specifically, we seek a deeper understanding of the performance of a
number of typical solvers in terms of robustness and scalability. The focus is placed on preconditioned
Krylov-based methods (GMRES in particular), nonlinear multigrid methods with a variety of smoothers,
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Figure 9. Intelr Xeon Phi™ Hybrid MPI/OpenMP runtimes for small and large meshes.

and a linear multigrid method. The goal is to discover the benefits and limitations of these solvers when
calculating steady-state RANS solutions in serial and parallel.

A. Preconditioners for Krylov-based Solvers

The selection of a suitable preconditioner is critical to obtaining robust convergence with a Krylov-based
linear solver. We have implemented and evaluated a variety of preconditioners for the GMRES algorithm.
In particular, the objective has been to evaluate the performance of the different preconditioners in serial
and parallel with local and global communication patterns that are found in realistic CFD problems.

Fig. 10 presents the results of an initial investigation into solver convergence with different preconditioners.
Using a standard test case (transonic, turbulent flow around the RAE 2822 airfoil) and starting with serial
calculations only, we can evaluate the number of internal iterations that are required to achieve a particular
level of linear solver convergence for each preconditioner. Here, we apply the Jacobi, Linelet, LU-SGS, and
ILU(0) preconditioners for a single nonlinear iteration (one time-step of the outer loop) of SU2 and count the
number of iterations of the GMRES solver (inner loop) required to achieve a specified convergence tolerance.

The results follow traditional wisdom on the selection of a preconditioner: a trade-off exists between the
amount of work required to apply the preconditioner and the subsequent convergence. On one end of the
spectrum, the application of the simple Jacobi preconditioner is very cheap, but it requires the most linear
solver iterations in all cases. Alternatively, the LU-SGS and ILU(0) preconditioners offer the best convergence
properties at the cost of additional computational work. It is important to note that here we have not yet fully
explored the impact of communication when these preconditioners are applied during distributed memory
calculations with MPI. Each preconditioner requires at least one point-to-point communication (see Fig.
17) with nearest neighbors (due to the sweeping of the LU-SGS algorithm, it requires two point-to-point
communications). These point-to-point communications can be removed so that the preconditioners operate
in a purely local fashion, but this has a detrimental impact on stability and convergence. However, this is
an area worth further investigation.

B. Nonlinear Multigrid Versus GMRES

During the course of this project, we have also focused on the multigrid (MG) technique as an alternative to
a GMRES solver. With a proper implementation, it is expected that multigrid has better scaling potential
than Krylov solvers, which are limited at large scale (1024+ compute nodes in a modern cluster) by the
global reductions inherent within the orthogonolization step.7,41,42 Multigrid involves only point-to-point
communication to exchnage the boundary information across subdomains in a distributed memory setting,
which scales very well on modern large scale clusters.
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Figure 10. Performance of different preconditioners to achieve a particular convergence level (baseline case
RAE 2822).
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When the nonlinear multigrid algorithm drives the external iterations, the choice of smoother on each
grid level plays an important role in the performance. The current implementation of SU2 can leverage
both the Krylov-based methods as smoothers as well as versions of the preconditioners for the Krylov-based
methods that have been repurposed as standalone smoothers for the linear system that arises on each grid
level. In the following sections, only a single iteration of each smoother is applied. Studying the effects of
multiple smoother iterations on each grid level is planned for future work. Additionally, a V-cycle is applied
with the nonlinear MG, and the number of grid levels is defined automatically by ensuring that the rate of
agglomeration between levels results in a sufficient reduction in the number of control volumes. Once this
threshold is met, the agglomeration process is terminated.

In most cases, the differences in performance manifest themselves through restrictions on the maximum
allowable CFL condition for maintaining numerical stability. The CFL condition governs the size of the time
step for a given nonlinear iteration. As a direct consequence for obtaining steady solutions of the RANS
equations, smoothers that require small CFL numbers will suffer from slow convergence.

Figure 11. Comparison of GRMES convergence with
non-linear multigrid using different smoothers.

Figure 12. Effect of using a GMRES solver as the
smoother in a non-linear multigrid iteration.

Fig. 11 contains a comparison of solver performance with MG for several smoother options against the
performance of GMRES without using MG (single solution on the original fine grid). The performance
metric in this case is to monitor the convergence of the lift coefficient to its steady value for the turbulent
NACA 0012 simulation. First, it should be noted that in this serial setting, GMRES provides very robust
convergence (the highest allowable CFL condition). It is also clear that the Jacobi and Linelet smoothers
result in prohibitively slow convergence due to their CFL restrictions. However, nonlinear MG coupled with
an LU-SGS or ILU(0) smoother may offer a potential alternative to GMRES, as these smoothers allow for
higher CFL conditions that can compete with the convergence performance of GMRES.

GMRES can also be used as the smoother on each grid level for the nonlinear MG algorithm in SU2,
and this was also exercised for the same NACA 0012 case, as shown in Fig. 12. Similar to the other
smoothers, the CFL number must also be reduced for stability with a GMRES smoother when nonlinear
MG is active. However, even with the reduced CFL, the overall convergence of the lift coefficient is improved,
which demonstrates the potential of the MG algorithm. In general, we find that smaller CFL conditions are
required for nonlinear MG, and one possible reason for this is the appearance of strong source terms within
the FAS MG algorithm. A number of damping factors have been implemented as part of the nonlinear MG
algorithm, and the application of these factors during restriction/prolongation can help alleviate stability
issues at the cost of decreased convergence behavior.

Due to its potential as an alternative for GMRES, the ILU(0) smoother was exercised in single grid mode
as well as with nonlinear MG in a similar numerical experiment. Fig. 13 shows a convergence comparison.
In this case, nonlinear MG with ILU(0) enables a higher CFL condition as well as better overall convergence
in the lift coefficient, which reinforces the idea that MG with an ILU(0) smoother holds potential.

Lastly, Fig. 14 presents a comparison of the lift convergence for the two top-performing smoothers with
the nonlinear MG algorithm: GMRES and ILU(0). Here, we see that, while the maximum CFL number for
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Figure 13. Non-linear multigrid compared with ILU0
smoother

Figure 14. GRMES versus a ILU0 smoother including
the non-linear multigrid in both simulations

the ILU(0) smoother is nearly half of that for GMRES, the overall convergence of the nonlinear solver is
comparable.

C. Linear Multigrid

A linear multigrid algorithm has also been implemented in SU2 as an option to solve the linear system
arising from the implicit solution of the RANS equations. The linear MG algorithm is also geometric in
nature (the coarse grid levels are created using the same agglomeration algorithm as the nonlinear MG), but
the key difference from the nonlinear MG is that the Jacobian matrix and residual vector (right-hand side)
are computed once on each grid level prior to beginning the MG cycle and held fixed throughout the linear
solve for each nonlinear time step (outer iteration). The same set of smoothers from the nonlinear MG are
available for the linear MG algorithm.

The convergence performance of the linear multigrid method at several CFL conditions is compared to
that of classical iterative solvers (smoothers) and a Krylov-based linear solver in Fig. 15. The behavior
of all solver variants is compared against a baseline solution obtained by converging the linear system to
machine tolerance with each nonlinear iteration. For moderate CFL numbers, the linear MG method with
an ILU(0) smoother demonstrates comparable results to a GMRES solver with an ILU(0) preconditioner.
While encouraging, these results were achieved on moderate grid sizes in serial. Therefore, the next step was
to extend the linear MG implementation to parallel calculations on larger grids.

D. Robust Linear Multigrid

The initial implementation of linear multigrid suffered from stability issues on finer grids and when executed
in parallel on multiple ranks (see Fig. 16). Two features were added in order to stabilize the linear MG
solver: a damping factor that multiplies the restricted residual vector upon transferring grids and a time
step limiter on the various grid levels (a limit is specified for the maximum allowable local time step in any
control volume). With these additions, stability can be recovered with linear MG.

As shown in Fig. 18 for the NACA 0012 test case, the current implementation of the linear MG provides
comparable convergence results to a GMRES solver for moderate CFL numbers. At higher CFL numbers,
the Krylov-based methods remain more robust, which was a conclusion also drawn in our early investi-
gations. However, we expect better scalability properties with the linear MG due to the lack of global
communications. Future work is geared towards pushing the present algorithms to extreme scale, which will
likely require further development of the MG algorithms in order to maintain robustness, including work in
areas such as agglomeration strategies, damping, time step limits, and optimizing the amount of compute
vs. communication across the grid levels.
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Figure 15. Linear multigrid compared with different alternatives at different CFL numbers.

Figure 16. Divergence behavior of the original linear
MG on fine grids in parallel

Figure 17. Parallel performance of the GMRES solver.
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Figure 18. Drag and lift convergence using the new implementation of the linear multigrid algorithm.
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VI. Conclusions

This article has presented the ongoing work towards optimizing the open-source SU2 analysis and design
suite for execution on modern highly parallel (multi- and many-core) architectures. Particular emphasis has
been placed on code parallelism (both fine- and coarse-grained), vectorization, efficient memory usage, and
identifying the best-suited algorithms for modern hardware.

We have presented a variety of fine-grained optimizations that speed up the single node performance of
SU2 PHI on Intelr Xeonr and Intelr Xeon Phi™ architectures. The optimizations are broadly classified
into three categories: 1) Code hybridization into MPI+OpenMP, 2) Efficient memory use, and 3) Vector-
ization. Within these categories, multiple optimization strategies and their implementation details were
presented. The performance gain from each of these optimizations was presented for both Intelr Xeonr
and Intelr Xeon Phi™ architectures for a couple of meshes. We obtain a 2.22x and 1.73x speed-up over
baseline code on Xeonr for the small and large meshes, respectively. And for Xeon Phi™, we obtain a
speedup of 3.53x and 2.95x over baseline code for small and large meshes, respectively. One big advantage of
Xeon Phi™ is that the optimizations done to improve Xeonr performance also help to improve Xeon Phi™
performance and vice-versa. This way, the developer does not have to maintain two different code bases for
the host and the co-processor.

Absolute performance measurements were also presented for the Xeonr and Xeon Phi™ architectures.
A full suite of hybrid runs were conducted by varying the number of MPI ranks across the entire spectrum
possible. For the small mesh, the best Xeon Phi™ runtime is 3.2x of the best Xeonr runtime, and for the
large mesh the best Xeon Phi™ runtime is 2.69x of the best Xeonr runtime. Thus the absolute performance
gap between Xeonr and Xeon Phi™ is reduced as the mesh size increases. Even with the lower performance
of Xeon Phi™ compared to Xeonr, the co-processor can still speedup the host run when added to the host
by running in symmetric mode. For this, one must carefully divide the workload between host and the
co-processor. Ongoing and future work is on further optimizing the Xeon Phi™ code.

The development of superior numerical algorithms and an optimal software implementation are both key
ingredients to face the challenge of effectively leveraging future exascale machines. After the identification
of some typical bottlenecks in the parallelization of a CFD code (e.g., linear solvers), we have proposed algo-
rithms that only require point-to-point communications (a key aspect for promoting high parallel scalability).
Furthermore, we have provided some arguments in support of the idea that choosing numerical methods that
require smaller time steps for stability might pay off once the CFD simulation is pushed to extreme scale. In
particular, we have studied the possibility of substituting Krylov-based methods (e.g., GMRES) by classical
iterative schemes accelerated with a multigrid algorithm. Some very encouraging results have been presented
in this area.

Finally, it should be reiterated that this article represents an early snapshot of promising results from
ongoing efforts to optimize the SU2 platform in the above areas, and that the final goal of the proposed
research is to combine the fine-grained optimizations of the codebase with scalable linear solver implemen-
tations in order to create a highly-optimized version of the SU2 suite for execution at extreme scale. Future
work will address this goal, and all pertinent results and conclusions will be shared with the community.
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