Introduction to SU² Code Structure

SU² Release Version 2.0 Workshop
Stanford University
Tuesday, January 15th, 2013

Amrita K. Lonkar
Department of Aeronautics & Astronautics
Stanford University
• Why Object Oriented?

 – Easy to add new capabilities

 – Easy to leverage a lot of existing capabilities.
SU² Modules

- **SU2_CFD** – The main PDE solution module
- **SU2_DDC** – The Domain Decomposition Code
- **SU2_MAC** – The Mesh Adaptation Code
- **SU2_MDC** – The Mesh Deformation Code
- **SU2_PBC** – The Periodic Boundary Condition Code
- **SU2_SMC** – The Sliding Mesh Code
SU2_CFD Module

1a) Read Input
 Class: CConfig
 • Read the config file

1b) Read Mesh
 Class: CGeometry
 • Read the mesh file
 • Set up multigrid meshes

2) Solve Equations
 Pick Solver
 Class: CSolution
 • Euler Equations: CEulerSolution
 • Plasma Equations: CPlasmaSolution
 • Adjoint Equations: CEulerAdjSolution
 • And others...

3) Write Output
 Class: COutput
 • Print on screen
 • Write solution file
 • Write restart file
 • Write history file

Store Flow Variables
 Class: CVariable
 • Stores variables at every mesh node.
 • Declare & store all flow variables
 • CEulerVariable: Density, energy etc.
 • CNSVariable: + Viscosity
 • CAdjVariable: Adjoint variables
 • And others...

Discretization
 Class: CNumerics
 Spatial Discretization
 • Convective Flux, Jacobian
 ▪ CNumerics:: Roe/JST/etc.
 • Viscous Flux, Jacobian
 ▪ CNumerics:: Avg_Grad/etc.
 • Source Terms, Jacobian
 ▪ CNumerics:: PieceWiseConst.
 Temporal Discretization
 • Explicit Euler/ Runge-Kutta
 • Implicit Time Integration

Solve Linear System
 Class: CSparseMatrix
 • BiCSTAB
 • GMRES
 • LU-SGS
 • Preconditioners
 ▪ Linelet
 ▪ Jacobi
 • Update solution vector
CGeometry Class

Files in Common/include:
- geometry_structure.hpp
- geometry_structure.inl

In Common/src
- geometry_structure.cpp
CSolution Class

Files in SU2_CFD/include:
- solution_structure.hpp
- solution_structure.inl

In SU2_CFD/src:
- solution_direct_mean.cpp
- solution_adjoint_mean.cpp
- solution_direct_plasma.cpp
- solution_direct_template.cpp
- etc.

Parent Class: CSolution

- CEulerSolution
- CTurbSolution
- CPlasmaSolution
- CWaveSolution
- CLevelSetSolution
- CAdjEulerSolution
- CAdjTurbSolution
- CAdjPlasmaSolution
- CAdjLevelSetSolution
- CNSSolution
- CTurbSASolution
- CTurbSSTSolution
- CTemplateSolution
- New Turbulence Model
- CAdjNSSolution

1) Read Input
 - Class: CConfig
 - Read the config file
 - File: config_structure.cpp

2) Solve Equations
 - Class: CMultGridIntegration
 - Use multigrid method
 - CSolution
 - Euler Equations: CEulerSolution
 - Plasma Equations: CPlasmaSolution
 - Turbulence Models: CTurbSolution
 - And others...

3) Write Output
 - Class: COutput
 - Print on screen
 - Write solution file
 - Write restart file
 - Write history file
 - File: output_structure.cpp

Store Flow Variables
- CVariable
 - Declare & store all flow variables
 - CVariable: Density, energy etc.
 - CVariable: Viscosity
 - CVariable: Eddy viscosity
 - And others...

Discretization
- CNumerics
 - Convective Flux, Jacobian
 - CNumerics: Roe/BT/etal.
 - Viscous Flux, Jacobian
 - CNumerics: Diffusion
 - Source Terms, Jacobian
 - CNumerics: PieceWiseConst.
 - Temporal Discretization
 - Explicit Euler/Runge-Kutta
 - Implicit Time integration

Solve Linear System
- CSparseMatrix
 - CGAES
 - LU-SGS
 - Preconditioners
 - Ulinelet
 - Jacobi
 - Update solution vector
CVariable Class

Parent Class: CVariable

- CEulerVariable
- CTurbVariable
- CPlasmaVariable
- CWaveVariable
- CLevelSetVariable
- CAdjEulerVariable
- CAdjTurbVariable
- CAdjPlasmaVariable
- CAdjLevelSetVariable
- CTemplateVariable
- CNSVariable
- CTurbSAVariable
- CTurbSSTVariable
- CAdjNSVariable
- New Turbulence Model

Files in SU2_CFD/include
- variable_structure.hpp
- variable_structure.inl
- variable_direct.cpp
- variable_adjoint.cpp
- variable_template.cpp
- etc.

Files in SU2_CFD/src
- variable_direct.cpp
- variable_adjoint.cpp
- variable_template.cpp
- etc.
CNumerics Class

Parent Class: CNumerics

- Roe’s Scheme
- JST Scheme
- AUSM Scheme
- HLLC Scheme
- Steger-Warming Scheme
- Roe-Turkel for low Mach
- Lax-Friedrich Scheme
- Upwinding for Turb Scalar
- Template Convective Terms

- Average Gradient
- Galerkin
- Average Gradient Corrected
- Template Viscous Terms

- Piecewise Constant Source
- Plasma Source
- Gravity Source
- Electrical Source
- Turbulence Source
- Transition Source
- Axisymmetric Source
- Rotational Frame Source
- Free Surface Source
- Template Source Terms
More here...

- **SU² Paper:**
 Stanford University Unstructured (SU2): An open-source integrated computational environment for multiphysics simulation and design. *AIAA 2013-0287*

- **Developers contact:**
 susquared-dev@mailman.stanford.edu

Thank you