
Stanford University Unstructured (SU2): An
open-source integrated computational environment for

multi-physics simulation and design.

Francisco Palacios∗, Michael R. Colonno∗,

Aniket C. Aranake†, Alejandro Campos†, Sean R. Copeland†, Thomas D. Economon†,

Amrita K. Lonkar†, Trent W. Lukaczyk†, Thomas W. R. Taylor†,

and Juan J. Alonso‡

Stanford University, Stanford, CA 94305, U.S.A.

This paper describes the history, objectives, structure, and current capabilities of the

Stanford University Unstructured (SU
2
) tool suite. This computational analysis and design

software collection is being developed to solve complex, multi-physics analysis and opti-

mization tasks using arbitrary unstructured meshes, and it has been designed so that it is

easily extensible for the solution of Partial Differential Equation-based (PDE) problems not

directly envisioned by the authors. At its core, SU
2
is an open-source collection of C++

software tools to discretize and solve problems described by PDEs and is able to solve

PDE-constrained optimization problems, including optimal shape design. Although the

toolset has been designed with Computational Fluid Dynamics (CFD) and aerodynamic

shape optimization in mind, it has also been extended to treat other sets of governing

equations including potential flow, electrodynamics, chemically reacting flows, and several

others.

In our experience, capabilities for computational analysis and optimization have im-

proved considerably over the past two decades. However, the ability to integrate the

resulting software packages into coupled multi-physics analysis and design optimization

solvers has remained a challenge: the variety of approaches chosen for the independent

components of the overall problem (flow solvers, adjoint solvers, optimizers, shape param-

eterization, shape deformation, mesh adaption, mesh deformation, etc) make it difficult to

(a) expand the range of applicability to situations not originally envisioned, and (b) to re-

duce the overall burden of creating integrated applications. By leveraging well-established

object-oriented software architectures (using C++) and by enabling a common interface

for all the necessary components, SU
2
is able to remove these barriers for both the beginner

and the seasoned analyst.

In this paper we attempt to describe our efforts to develop SU
2
as an integrated platform.

In some senses, the paper can also be used as a software reference manual for those who

might be interested in modifying it to suit their own needs. We carefully describe the C++

framework and object hierarchy, the sets of equations that can be currently modeled by

SU
2
, the available choices for numerical discretization, and conclude with a set of relevant

validation and verification test cases that are included with the SU
2
distribution. We intend

for SU
2
to remain open source and to serve as a starting point for new capabilities not

included in SU
2
today, that will hopefully be contributed by users in both academic and

industrial environments.

∗Engineering Research Associate, Department of Aeronautics & Astronautics, AIAA Member.
†Ph.D. Candidates (authors in alphabetical order), Department of Aeronautics & Astronautics, AIAA Student Members.
‡Associate Professor, Department of Aeronautics & Astronautics, AIAA Associate Fellow.

1 of 60

American Institute of Aeronautics and Astronautics

51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
07 - 10 January 2013, Grapevine (Dallas/Ft. Worth Region), Texas

AIAA 2013-0287

Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

I. Introduction

The solution of challenging multi-disciplinary problems involves the interaction between separate modules
that represent different physical models and procedures, and for avoiding efficiency and integration issues,
it can be beneficial for the modules to share a common set of numerical solution algorithms and code
architecture. For example, the unsteady aero-acoustic design of plasma actuators for wind turbines requires
the solution of the plasma equations around the actuator, the Reynolds-averaged Navier-Stokes (RANS)
equations in the neighborhood of the turbine, the Ffowcs Williams and Hawkings model for far-field noise
propagation, and the entire system might need to be coupled with a Finite Element Method (FEM) model
of the blade structure. Additionally, adjoint equations might need to be solved for each system, and the
entire problem may require an infrastructure for shape design (shape parameterization, grid deformation,
and optimization algorithms) to be available. In many other situations of aerospace interest (supersonic
low-boom design, helicopter rotor optimization, uncertainty quantification in re-entry vehicles, hypersonic
propulsion systems, advanced environmentally-friendly aircraft, modern engine designs, etc.) the situation
is similar: the ability to integrate multiple physics, parameterize the resulting system, and design/optimize
the outcome is of utmost importance and must be accomplished with minimum effort.

Although it is possible to identify the key characteristics of computational analysis and design / opti-
mization suites that lead to capabilities and efficiencies mentioned above, one rarely has the opportunity and
the resources to create such environments from the ground up. As a consequence, the architecture of the
resulting efforts lacks the necessary flexibility and sophistication to overcome all the challenges. Fortunately,
SU2 was developed from scratch to overcome some of these limitations. In addition, the modern high-level
programming languages leveraged in SU2 (C++ in our case) have long provided the capabilities to ensure
portability, code reuse, and the flexibility required to re-purpose existing software for new and different uses.
In order to overcome challenges and develop a lasting infrastructure for future efforts, the basic philosophy
in the development of the SU2 framework has been to ensure:

• An open-source model: while the Aerospace Design Laboratory (ADL) at Stanford University has
provided the basic formulation with a reasonable set of initial capabilities, we would like to see contri-
butions from the community to further enhance the capabilities of the suite, and we will ensure that
all of these developments are available to all users in the future.

• Portability: SU2 has been developed using ANSI C++ and only relies on widely-available, well-
supported, open-source software including OpenMPI, Metis, and Python. As such, SU2 is able to
run on any computing platform for which a C++ compiler is available.

• Reusability and encapsulation: SU2 is built so that the main concepts (geometry, grids, solution
algorithms, numerical implementations, etc.) are abstracted to a very high-level. This abstraction
promotes reusability of the code and enables modifications without incorrectly affecting other portions
of the modules in the suite.

• Performance: we have attempted to develop numerical solution algorithms that result in high-performance
convergence of the solver in SU2. Although some level of performance is traded for reusability and
encapsulation, the loss in performance is minor.

• Gradient availability: for many applications (optimization, response surface formulations, uncertainty
quantification, among others) it is important to obtain gradients of the responses computed by SU2

to variations of, potentially, very large numbers of design parameters. For this reason, SU2 relies on
adjoint solver implementations that can be used to compute the necessary gradients. In addition, these
adjoint solutions can be used to compute functional-driven mesh adaptation techniques.

Using this philosophy within SU2, we are able to develop both Finite Volume Method (FVM) or FEM solvers,
their corresponding adjoint systems, and, if needed, multi-physics solvers that can combine both approaches.
The use of a clearly-structured set of classes allows for the easy identification of the main pieces of the
code that will need to be re-implemented or enhanced for new models without interfering with the main
code. A library of numerical schemes and linear solvers reduces the development time required for a new
implementation (e.g., agglomeration multigrid, line-implicit relaxation, and goal-oriented grid adaptation are
generic capabilities provided by SU2 that can be reused in many numerical simulations.) Additionally, the
solver structure and parallelization methodology are shared by all the members of the suite. It is important

2 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

to highlight that the ability to easily integrate these solvers ensures that new features or updated models
can be included without affecting the main infrastructure and with a reasonably low degree of difficulty.

At the time of this writing, the SU2 software suite specializes in high-fidelity PDE analysis and in the
design of PDE-constrained systems on unstructured meshes. The suite itself is composed of several C++
analysis modules that handle specific jobs, including:

• SU2 CFD: The main PDE solution module that started primarily as an Euler and RANS CFD solver,
but has been modified to treat many other governing equations, including the adjoint equations for
many of the supported governing equation systems.

• SU2 DDC: The Domain Decomposition Code, used to prepare SU2 for computations involving multiple
processors.

• SU2 MAC: The Mesh Adaptation Code that can be used to refine the unstructured computational
meshes to improve the accuracy of the predictions.

• SU2 GPC: The Gradient Projection Code that allows for the calculation of sensitivities for use in
optimization and uncertainty quantification.

• SU2 MDC: The Mesh Deformation Code that can be used to perturb an existing unstructured volume
mesh to conform to new surface geometries dictated by either shape optimization processes or aero-
structural simulations.

• SU2 PBC: The Periodic Boundary Code, a pre-processor to allow for the solution of PDEs on periodic
domains.

• SU2 SMC: The Sliding Mesh Code, a pre-processor that enables the solution of PDEs on meshes that
slide (translational or rotational capabilities included) past each other.

Additional modules may be added as further capabilities are needed and included in the software. This
structure makes SU2 an ideal vehicle for performing multi-physics simulations, including multi-species ther-
mochemical non-equilibrium flow analysis, combustion modeling, two-phase flow simulations, magnetohy-
drodynamics simulations, etc.

SU2 is under active development in the Aerospace Design Lab (ADL) of the Department of Aeronautics
and Astronautics at Stanford University. It has also been released under an open-source license, and it is
freely available to the community, so that developers around the world can contribute to and improve the
suite. Prior to release, significant efforts were directed at the development of sufficient documentation so that
prospective users could get up to speed without interaction with the development team. For this reason a
set of tutorials that cover all the basic capabilities of SU2 was created and is distributed with SU2. Since the
initial release of SU2 in January of 2012, there have been over 24, 000 visits to the SU2 web page, more than
3, 000 downloads of the software, many requests for participation in periodic SU2 workshops, and significant
participation in Facebook and Twitter.

The organization of this paper is as follows. Section II describes the object-oriented class structure of
SU2 and the flexibility of the implementation. Details on the numerical modeling are provided in sections III
and IV. Section V provides examples of the current functionality and performance of SU2 using representative
simulations and design problems, and finally, the conclusions are summarized in section VI.

It is our intent for this paper to be the main reference for work that uses or enhances the capabilities of
SU2, and for it to serve as a sort of reference manual for researchers and engineers that would like to learn
more about the details of the software suite. The current implementation of SU2 is already very capable,
but many additional capabilities are being requested from our development group. We intend to tackle some
of them in the near future, but we also look forward to contributions by the entire community in order to
make SU2’s future a sustainable one.

3 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

II. Code framework

The SU2 software suite was conceived as a common infrastructure for solving Partial Differential Equation
(PDE) problems using the Finite Volume Method (FVM) or Finite Element Method (FEM). The code
structure and the high-level time and spatial integration structure is shared by all of the applications, and
only specific numerical methods for the convective, viscous and source terms are reimplemented for different
models where necessary. There is no fundamental limitation on the number of state variables or the number
of governing equation systems that can be solved simultaneously in a coupled or segregated way (other than
the physical memory available on a given computer architecture), and the more complicated algorithms and
numerical methods (including parallelization, multigrid and linear solvers) have been implemented in such
a way that they can be applied without special consideration during the implementation of a new physical
model.

The suite is composed of seven C++ software modules that perform a wide range of tasks related to PDE
analysis (grid adaptation, grid deformation, surface definition, optimization, etc.). An basic description of
each of module is included in Sec. 1 to give a overall perspective of the suite’s capabilities. Some modules
can be executed individually to perform high fidelity analysis, most notably SU2 CFD, but the real power of
the suite lies in the coupling of the modules for performing complex activities including design optimization
and adaptive grid refinement. To that end, coupling of the SU2 software modules can be accomplished using
supplied Python scripts that will be also described in Sec. 2. Note also that all of the modules share the
same C++ class structure, and thus, for example, all of the grid deformation capabilities can be integrated
directly into the CFD solver or used separately as an independent code.

Another key feature of the C++ modules is that each has been designed to separate functionality as much
as possible while leveraging the advantages of the class-inheritance structure of the programming language.
This makes SU2 an ideal platform for prototyping new numerical methods, discretization schemes, governing
equation sets, mesh perturbation algorithms, adaptive mesh refinement schemes, parallelization schemes,
etc. Ultimately, this philosophy enables the extension of the suite to a wide variety of PDE analysis and
design problems.

A. Software architecture

SU2 is built to enable vertical integration with optimizers and to reduce the amount of user overhead required
for setup. There are five levels of components in the optimization control architecture, and most rely on
Python scripts to modify the configuration input, execute lower-level components and post-process any
resulting data. To simplify and shorten overhead time during problem setup, all levels start from a common
configuration file, which is modified as needed when passed to lower levels. Listed in order from lowest to
highest, these levels are:

• Core tools - These contain all of the SU2 binary executables, which are the core tools of the suite.
As input, they take a custom format ASCII configuration file. For output, they write data such
as integrated forces, moments and other objectives to an iteration history file, field data to files for
plotting, or deformed, adapted, or decomposed meshes in the native format, for instance.

• Solution decomposition/recomposition - Many of the core solvers (i.e., SU2 CFD, SU2 MDC, SU2 GPC,
SU2 MAC) can operate in parallel on a partitioned mesh. The management of pre-process mesh de-
composition and post-process plot file merging for this data is handled by the ’parallel computation.py’
and ’parallel deformation.py’ Python scripts (’parallel adaptation.py’ is under development).

• Sensitivity analysis - This level manages the pre- and post-processing needed for calculating perfor-
mance sensitivities with respect to user-specified design variables. Both continuous adjoint and finite
differencing approaches have been implemented, and the discrete and hybrid adjoint approaches are
under development. For the adjoint approach, both a direct and adjoint solution are computed, and the
resulting adjoint surface sensitivities must be projected into the design space during a post-processing
step. In the case of finite differencing, multiple, but independent, evaluations of the direct problem are
required before the performance sensitivities can be calculated.

• Design evaluation - For easier integration with optimization packages, SU2 has a design management
class that wraps a black box around the previous components and only takes design vectors for input.

4 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

This interprets special configuration file options for design variables which allow it to set up mesh
deformation. When it receives a design vector from the optimizer, it then executes mesh deformation,
direct solution, and sensitivity analyses as needed, and then finally returns performance data. As it
operates, it archives restart and plot data in an organized folder structure, which may be useful for
secondary analyses or debugging. Evaluations of multiple design requests can be submitted in parallel
if the resources are available, for example on a high-performance computing cluster.

• Design optimization - Single-objective design optimization is the highest level of architecture that we
have developed at the moment. Two optimization strategies have been adopted for use with SU2. The
first is gradient-based optimization using SciPy’s SLSQP optimizer, which adds complexity by requiring
separate function handles for the objective function, constraints and their sensitivities. The second is
surrogate based optimization, where an in-house gradient-enhanced Gaussian Process Regression based
optimizer is used.

1. C++ software modules

The core tools of the SU2 suite are the C++ modules, a brief description of each binary is presented below:

• SU2 CFD (Computational Fluid Dynamics Code) - Solves direct, adjoint (steady or unsteady) prob-
lems for the Euler, Navier-Stokes and Reynolds-Averaged Navier-Stokes (RANS), plasma, free-surface,
electrostatic, etc., equation sets. SU2 CFD can be run serially or in parallel using MPI. It uses either
FVM or FEM and an edge-based structure. Explicit and implicit time integration methods are avail-
able with centered or upwinding spatial integration schemes. The software also has several advanced
features to improve robustness and convergence, including residual smoothing, agglomeration multi-
grid, linelet and low speed preconditioning, and Krylov space methods for solving linear systems. The
capabilities of this tool are the subject of much of this article.

• SU2 GPC (Gradient Projection Code) - Computes the partial derivative of a functional with respect
to variations in the aerodynamic surface. SU2 GPC uses the surface sensitivities computed using
SU2 CFD, the flow solution and the definition of the geometrical design variables to evaluate the
derivative of a particular functional (e.g. drag, lift, etc.).

• SU2 MDC (Mesh Deformation Code) - Computes the geometrical deformation of surfaces within the
computational mesh and the surrounding volumetric grid. Once the type of deformation is defined,
SU2 MDC performs the grid deformation using different strategies. Three-dimensional deformations
use a method called Free Form Deformation (FFD), while two-dimensional problems typically use
bump functions, such as Hicks-Henne.

• SU2 MAC (Mesh Adaptation Code) - Performs grid adaptation using various techniques (including
goal-oriented) based on the analysis of a converged flow, adjoint or linearized solution to strategically
refine the mesh about key flow features.

• SU2 DDC (Domain Decomposition Code) - Partitions the specified volumetric grid for use with several
of the other core tools when performing simulation or design in parallel. SU2 DDC is built around the
METIS48 software that will identify and assign nodes to each processor for achieving load balancing
with minimal communication (edge cuts). Once that information is received, SU2 DDC prepares the
communication between nodes on different partitions and generates the appropriate computational grid
partitions required by the other core tools for executing in parallel.

• SU2 PBC (Periodic Boundary Code) - Creates ghost cells in the computational domain for performing
simulations with periodic boundary conditions and outputs a new mesh containing the proper com-
munication structure between periodic faces. This module must be run prior to SU2 CFD for any
simulation the uses such boundary conditions.

• SU2 SMC (Sliding Mesh Code) - Creates ghost cells in the computational domain for performing simu-
lations with sliding surfaces and outputs a new multi-zone mesh containing the proper communication
structure between sliding interfaces. As in the case of SU2 PBC, this module must be run prior to
SU2 CFD.

The C++ modules share a common class structure to increase the flexibility of the overall SU2 suite. A
description of the main classes of the code is presented in Sec. B.

5 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

2. Python wrapping

The various software modules of SU2 can be coupled together to perform complex analysis and design tasks
using supplied Python scripts. A brief description of the most used scripts is provided below:

• High fidelity analysis scripts. These scripts have been designed to enhance the flexibility of the SU2

framework. More specifically, they simplify the execution of parallel tasks, grid adaptation, or the
interface with other software.

– parallel computation.py - Handles the setup and execution of parallel CFD jobs on multi-core or
cluster computing architectures. The script calls SU2 DDC to partition the grid for the specified
number of processors then executes SU2 CFD in parallel.

– parallel deformation.py - Handles the setup and execution of parallel mesh deformation jobs on
multi-core or cluster computing architectures. The script calls SU2 DDC to partition the grid for
the specified number of processors then executes SU2 MDC in parallel.

– grid adaptation.py - Automates the grid adaptation procedure. The script links SU2 CFD and
SU2 MAC, refining the input grid based on parameters specified in the configuration file.

– libSU2.py - Contains definitions for commonly used configuration and data file i/o.

– libSU2 mesh.py - Contains definitions for accessing SU2 native mesh file data.

– tasks general.py - Contains a class structure for abstracting the execution of major SU2 tasks.

– tasks su2.py - Contains project and job class definitions for the non-sequential execution of SU2

tasks.

– task project.py - Performs top-level execution of SU2 projects which can be wrapped by various
optimizers.

– patient designspace.py - For use on a computing cluster, it submits and collects data from multiple
SU2 jobs.

• Optimal shape design scripts. These scripts have been designed to automate the optimal shape design
process which includes functional and gradient computation, mesh deformation, and an optimization
algorithm.

– continuous adjoint.py - Automatically computes the sensitivities of a specified functional with
respect to design parameter perturbations (specified in the SU2 CFD configuration file) using the
adjoint method. The SU2 CFD and SU2 GPC modules are called to perform the analysis.

– finite differences.py - Automatically computes the sensitivities of a specified functional with re-
spect to design parameter perturbations using a finite difference method. As with the continu-
ous adjoint.py script, design variable information is read from the configuration file and SU2 CFD
is called repeatedly to calculate the appropriate gradient elements.

– shape optimization.py - Orchestrates all SU2 modules to perform shape optimization. The choice
of objective function, design variables and additional module settings specifying the optimization
problem are controlled through options in the configuration file.

• Automatic differentiation scripts. A combination of python scripts and the automatic differentiation
tool Tapenade26 can be used by developers to create differentiated versions of code sections in SU2.

– convert routines cpp2c.py - Uses custom comment lines in the SU2 C++ source code to create a
C version of desired routines, replacing the class structure by simply passing required variables
to the new routine.

– differentiate routines.py - Calls Tapenade to differentiate a C routine.

– convert routines c2cpp.py - Converts a differentiated C routine back to C++ code, restoring the
class structure that existed before in the SU2 source code.

– insert routines.py and insert math.py - Inserts the differentiated C++ code into source files be-
tween custom comment lines.

• General utility scripts.

6 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

– autotest.py - This script performs automated regression tests of the SU2 suite after every commit
to the central software repository (continuous integration). Established test cases are executed,
and the output is compared against known results. Any discrepancies are immediately reported to
the developers. These regression tests help ease the integration of new capabilities while preserving
previous functionality in the software.

– config gui.py - This graphical interface is provided to ease the creation and modification of SU2

configuration files. The script reads the permitted options directly from the source code, groups
them based on functionality, and provides a drop-down menu for enumerated types.

B. C++ class structure

The objective of this section is to introduce the C++ class structure of SU2. The class descriptions below
focus on the structure within SU2 CFD (the main component of SU2), but most of the classes are also used
in the other modules. Maximizing the flexibility of the code was a fundamental driver for the design of the
class architecture, and an overview of it is shown in Fig. 1.

Figure 1. Class hierarchy in SU2 CFD.

As a starting point, the module SU2 CFD instantiates three basic classes, namely:

• CConfig - Reads the problem description including all options and settings from the input file (extension
.cfg).

• COutput - Writes the output of the simulation in a user-specified format (Paraview, Tecplot, or comma-
separated values).

• CIntegration - Solves the particular governing equations by calling the child classes CMultiGridIntegra-
tion, CSingleGridIntegration. This is used for both multigrid or single-grid calculations and connects
the subclasses CGeometry, CSolution and CNumerics for performing integration in time and space.

The core capabilities of the computational tool are embedded within the CGeometry, CSolution and
CNumerics classes that manage the geometry, the main solver functionality, and the numerical methods,
respectively. In the next subsection, these three classes will be discused in detail.

7 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

1. CGeometry class

This class reads and processes the input mesh file (extension .su2), and it includes several child classes, such
as:

• CPhysicalGeometry - Constructs the dual mesh structure from the primal mesh. Note that the FVM
formulation in SU2 is based on this dual mesh.

• CMultiGridGeometry - Creates consecutively coarser meshes from the original input mesh for multigrid
calculations.

• CPrimalGrid and CDualGrid - Two classes (see Fig. 2) used for defining all the geometrical character-
istics of the primal and dual grids.

Figure 2. Parent and child classes related to geometry processing.

2. CSolution class

In this class, the solution procedure is defined. Each child class of CSolution represents a solver for a
particular set of governing equations. One or more of these child classes will be instantiated depending on
the desired physics, and several examples are:

• CEulerSolution - For the Euler equations (compressible or incompressible).

• CTurbSolution - For a turbulence model.

• CPlasmaSolution- For the reacting flow equations.

• CAdjEulerSolution - For the adjoint equations of the Euler equations.

These subclasses call several classes in CNumerics to discretize the governing equations and, if necessary,
the CSparseMatrix class to solve the linear system of equations and CSysVector to hold and manipulate
vectors needed by linear solvers. A detailed list of all child classes found within CSolution is given in Fig. 3,
but in general, these subclasses instantiate copies of two other classes:

• CVariable - Used to store variables at every point in the grid, such as the conservative variables.
Depending on the system of equations being solved, CVariable instantiates a certain child class and
stores a set of variables particular to that problem at each grid node. For example, the CNSVariable
child class stores the variables for the Navier-Stokes equations which will include viscosity, while the
CEulerVariable child class does not need to store viscosity. A detailed list of all these child classes is
given in Fig. 3.

• CSparseMatrix - Stores values for the Jacobians of fluxes and source terms in a sparse matrix structure
for implicit calculations. It includes various methods for solving a linear system such as LU-SGS,
BiCGSTAB, GMRES, among others, in addition to several preconditioning techniques such as line
implicit or Jacobi preconditioning.

8 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

• CSysVector - Holds and manipulates vectors needed by linear solvers in combination with CSparseMa-
trix to store the Jacobian sparse matrix.

Figure 3. List of child classes for the CSolution and the CVariable classes. A few of the child classes have
their own children, such as CEulerSolution, which has the class called CNSSolution that inherits all the char-
acteristics of CEulerSolution in addition to those that are specific to it (viscous methods). The “CTemplate”
child class is a template for adding future capabilities.

3. CNumerics class

This class discretizes each system of governing equations using the numerical schemes specified in the input
file. There are several child classes which provide a wide range of discretization techniques for convective
fluxes, viscous fluxes and any source terms present. For example, if one is interested in solving for a plasma
flow, CNumerics would call one child class corresponding to the convective scheme, one corresponding to the
viscous terms and a third for the discretization of the chemical source terms.

For instance, in an implicit calculation, methods in these classes calculate the residuals and Jacobians at
each node (using the variables stored in the CVariable class) and feed the results back to CSolution which
then calls routines within CSparseMatrix to solve the resulting linear system of equations. Fig. 4 shows a
list of the various capabilities in the CNumerics class.

As an example of the complete class architecture instantiated for a specific set of governing equations,
Fig. 5 shows the structure for a simulation of the RANS equations with explicit time integration. It is
important to highlight that these equations are solved as a multiphysics problem (i.e., the mean flow and
turbulence model equations are solved separately and coupled). Therefore, two child classes are instantiated
from CSolution (CNSSolution and CTurbSolution) as well as from CVariable (CNSVariable and CTurbVari-
able).

C. File input/output

1. Configuration file

The configuration file is a simple text file (extension .cfg) that sets the options for the SU2 suite. The
configuration file consists of three possible elements:

• Options - An option in the file has the following syntax: option name = value, where option name is
the name of the option and value is the desired option value. The value element may be a scalar data

9 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 4. List of child class capabilities found under the CNumerics parent class. The “CTemplate” child
class is a template for adding future capabilities.

Figure 5. Class hierarchy for solving a two-dimensional RANS problem.

10 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

type, a list of multiple data types, or a more complicated structure. The “=” sign must immediately
follow the option name element and is not optional, though spaces and tabs between the various value
elements are not significant. Lower, upper, or mixed-case strings are allowed.

• Comments - On a single line, any text appearing after a % is considered a comment and is ignored by
SU2. Additional % signs after the first appearance on any line are not significant.

• White space - Empty lines are ignored. On text lines that define options, white space (tabs, spaces)
can be used to format the appearance of the file.

2. Mesh file native format (.su2)

In keeping with the open source nature of the project, SU2 relies mostly on its own native mesh format,
which is meant to be simple and readable. SU2 meshes carry an extension of .su2, and the files are in ASCII
format. As an unstructured code, the suite requires information about both the node locations as well as
their connectivity, which provides information about the types of elements (triangle, rectangle, tetrahedron,
hexahedron, etc.) that make up the volumes in the mesh and also which nodes make up each of those
elements. Lastly, the boundaries of the mesh, or markers, are given names, or tags, and their element
connectivity is specified in a similar manner as that of the interior elements.

The first line of the .su2 mesh declares the dimensionality of the problem. SU2 can handle two- or
three-dimensional geometries, but note that for two-dimensional simulations, it is recommended that a truly
two-dimensional mesh is used (no z-coordinates) rather than a quasi-two-dimensional mesh (one or more
cells deep in the third dimension with symmetry boundary conditions).

The next part of the file describes the interior element connectivity. SU2 is based on unstructured mesh
technology and thus supports several element types for both two-dimensional and three-dimensional elements.
Unlike for structured meshes where a logical, ordered indexing can be assumed for neighboring nodes and
their corresponding cells (rectangles in two-dimensions and hexahedral elements in three-dimensions), for an
unstructured mesh, a list of nodes that make up each element must be provided.

On each line in the connectivity section of the mesh file, following an identifier of the element type is a
list of the node indices that make up the element. Each triangular element will have three nodes specified, a
rectangular element will have four nodes specified, a tetrahedral element will have four nodes specified and
so on. The final value is the element index given to each interior element in the mesh.

After the connectivity information for all interior elements, the coordinates for each of the nodes are
given. Immediately after the node number specification comes the list of node coordinates in cartesian
(x, y, z) space. Each line gives the coordinates for a single node followed by its unique index number. The
node index numbers are the indices used for specifying the connectivity information for elements. For a
two-dimensional mesh, the x and y coordinates are given followed by the index, but a three-dimensional
mesh would give x, y, and z, followed by the index.

The final section of the mesh file is a description of all boundaries (which we call markers), including
a name (called a tag). For each boundary, the connectivity information is given based on the index given
to each node. For a two-dimensional mesh, only line elements are possible along the boundaries, but for a
three-dimensional mesh, there are two possible options for boundary elements: triangular and rectangular.
First, the number of boundaries, or markers, is specified. Then for each marker, a name, or tag, is specified.
This tag can be any string name, and the tag name is used in the configuration file for the solver when
specifying boundary conditions. The number of elements on each marker must then be specified before
listing the connectivity information as was done for the interior mesh elements at the start of the file. Again,
the unique VTK30 identifier is given at the start of each line followed by the node list for that element.

3. Solution and restart files

SU2 is currently capable of outputting solution files that can be visualized with either ParaView (.vtk)
or Tecplot (.plt). At the end of each simulation, the software creates several files that contain all of the
necessary information for both visualization and restart, and the default names of these files can be changed
in the configuration file. For unsteady flows, activating the unsteady writing option in the configuration file
will automatically increment the file names with the corresponding time step number and prepare the file
for animation within visualization software.

11 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

• For a direct flow solution, these default files names are:

– flow.plt or flow.vtk - Full volume flow solution.

– surface flow.plt or surface flow.vtk - Flow solution on specified surfaces.

– surface flow.csv - Comma separated values (.csv) file containing values on specified surfaces.

– restart flow.dat - Restart file in a native format for restarting simulations in SU2.

– history.plt or history.csv - File containing the convergence history information.

• For adjoint solutions, the default file names are slightly different:

– adjoint.plt or adjoint.vtk - Full volume adjoint solution.

– surface adjoint.plt or surface adjoint.vtk - Adjoint solution on specified surfaces.

– surface adjoint.csv - Comma separated values (.csv) file containing values on specified surfaces.

– restart adj cd.dat - Restart file in a native format for restarting simulations in SU2. Note that
the name of the objective function appears in the file name.

– history.plt or history.csv - File containing the convergence history information.

It is important to highlight that SU2 also uses a simple and readable format for the restart files. The
SU2 solution file carries the extension .dat, and the files are in ASCII format. The solution, and eventually
the residual, is provided at each node in the numerical grid, and no information about the connectivity or
coordinates is included in the file. For the sake of clarity, the node index is provided at the beginning of
each line, though this index value is not used by the code and the ordering of the points is (and must be
kept) the same as in the mesh file. The restart files are used not only to restart the code from a previous
solution but also to run adjoint simulations, which require a converged flow solution.

12 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

III. Modeling

The flexible class structure of SU2 has been designed to solve problems defined on a domain Ω ⊂ R3,
delimited by disconnected boundaries. In particular, the PDE system resulting from physical modeling of
the problem should have the following structure:

∂tU +∇ · �F
c
−∇ · �F

v = Q in Ω, t > 0 (1)

with appropriate boundary and temporal conditions that will be problem-dependent. In this general frame-
work, U represents the vector of state variables, �F c(U) are the convective fluxes, �F v(U) are the viscous fluxes
and Q(U) is a generic source term. In this section, some of the most important physical systems already
implemented in SU2 will be described using Eq. 1 as a baseline PDE.

A. Reynolds-averaged Navier-Stokes (RANS) equations

Several forms of the RANS equations have been implemented in SU2 (compressible, incompressible, Arbitrary
Lagrangian-Eulerian, etc.), and a brief description of the physics involved and the corresponding governing
equations is given below for each. Naturally, both the laminar Navier-Stokes and Euler equations are also
available in the code as subsets of the RANS equations by disabling turbulence modeling and by completely
removing viscosity, respectively.

1. Compressible formulation

Classic aeronautical applications assume that the air is governed by the compressible Navier-Stokes equa-
tions50 which describe the conservation of mass, momentum, and energy in a viscous fluid. In the SU2

framework, the vector of conservative variables is U = (ρ, ρv1, ρv2, ρv3, ρE)T, where ρ is the density, E is the
total energy per unit mass, and �v = (v1, v2, v3) ∈ R3 is the flow velocity in a Cartesian coordinate system.
In this particular model, convective and viscous fluxes are then given by

�F
c

i
=





ρvi

ρviv1 + P δi1

ρviv2 + P δi2

ρviv3 + P δi3

ρviH




, �F

v

i
=





·

τi1

τi2

τi3

vjτij + µ
∗
tot

Cp∂iT




, i = 1, . . . , 3 (2)

where P is the static pressure, H is the fluid enthalpy, δij is the Kronecker delta function, and the viscous
stresses may be written as τij = µtot

�
∂jvi + ∂ivj −

2
3δij∇ · �v

�
. Recall that latin indices i, j denote 3-D

Cartesian coordinates with repeated indices implying summation.
In these formulas, Cp is the specific heat at constant pressure, T = P/(Rρ) is the temperature and R is

the gas constant, such that for an ideal gas, Cp = γR/(γ − 1), with γ being a constant. In order to close
the system of equations, the dynamic viscosity, µdyn, is assumed to satisfy Sutherland’s law,97 the turbulent
viscosity µtur is computed via a turbulence model, and

µtot = µdyn + µtur, µ
∗
tot

=
µdyn

Prd
+

µtur

Prt
, (3)

where Prd and Prt are the dynamic and turbulent Prandtl numbers, respectively.
The compressible RANS solver in SU2 currently supports the following boundary condition types: Euler

(flow tangency) and symmetry wall, no-slip wall (adiabatic and isothermal), far-field and near-field bound-
aries, characteristic-based inlet boundaries (stagnation, mass flow, or supersonic conditions prescribed),
characteristic-based outlet boundaries (back pressure prescribed), periodic boundaries, nacelle inflow bound-
aries (fan face Mach number prescribed), and nacelle exhaust boundaries (total nozzle temp and total nozzle
pressure prescribed).

An important consideration when solving the Navier-Stokes equations is the non-dimensionalization. The
particular scheme chosen for SU2 can be found in Tables 1, 2 and 3, and is based on the internal document
“Non-dimensionalization of the Navier-Stokes Equations” written by Prof. Feng Liu.

13 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Variables SU2 value SI

Length lref (input) m

Pressure pref (input) N/m2

Density ρref (input) kg/m3

Temperature Tref (input) K

Velocity uref =
�
pref/ρref m/s

Time tref = lref/uref s

Dynamic viscosity µref = ρref uref lref kg/(m.s)

Rotor speed Ωref = uref/lref 1/s

External body force bref = u
2
ref

/lref m/s2

Table 1. Basic independent variables for which the reference values can be arbitrarily chosen.

Variables SU2 value SI

Kinematic viscosity νref = µref/ρref m2/s

Strain rate Sref = uref/lref 1/s

Stress τref = pref N/m2

Specific energy eref = u
2
ref

J/kg

Specific enthalpy href = eref J/kg

Specific entropy sref = eref/Tref J/(kg.K)

Heat flux qref = ρref eref uref J/(m2.s)

Gas constant Rref = eref/Tref J/(kg.K)

Heat capacity (constant pressure) cpref = Rref J/(kg.K)

Heat capacity (constant volume) cvref = Rref J/(kg.K)

Heat conductivity kref = cpref µref W/(K.m)

Turbulent kinetic energy kref = u
2
ref

J/kg

Turbulent specific dissipation ωref = uref/lref 1/s

Table 2. Derived variables whose reference values are determined from the choice of the basic independent
variables in Table 1.

2. Incompressible formulation

The incompressible solver in SU2 is based on the artificial compressibility formulation developed by Chorin13

(valid for steady-state only), and it uses the following set of state variables U = (P, ρv1, ρv2, ρv3)T, where P

is the pressure and �v = (v1, v2, v3) ∈ R3 is the flow velocity in a Cartesian coordinate system. The convective
and viscous fluxes are then given by

�F
c

i
=





β
2
vi

ρviv1 + P δi1

ρviv2 + P δi2

ρviv3 + P δi3




, �F

v

i
= µtot





·

∂iv1

∂iv2

∂iv3




, Q =





·

·

·

−
ρ

Fr2




, i = 1, . . . , 3 (4)

where the artificial compressibility parameter is denoted by β
2, Fr is the Froude number, and the total

viscosity is computed as µtot = µdyn + µtur. The density and viscosity are inside the differential operators
because their value will change across a hypothetical free-surface interface (already implemented in SU2).

The incompressible solver in SU2 currently supports the following boundary condition types: Euler (flow
tangency) wall, no-slip wall (adiabatic), far-field and symmetry boundaries, inlet boundaries (total conditions
or mass flow prescribed), and outlet boundaries (back pressure prescribed).

14 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Variables SU2 value

Ratio of specific heats γ = Cp/Cv (input)

Dimensionless gas constant R = R
∗
/Rref (input R∗)

Molecular Prandtl number Prl = Cpµ/k (input)

Turbulent Prandtl number Prt = Cpµt/kt (input)

Strouhal number (St)ref = lref/(uref tref) = 1

Euler number (Eu)ref = pref/(ρref u2
ref

) = 1

Reynolds number (Re)ref = ρref uref lref/µref = 1

Rossby number (Ro)ref = uref/(Ωref lref) = 1

Froude number (Fr)ref = uref/
�
bref lref = 1

Table 3. Non-dimensional parameters and coefficients based on the reference variables.

3. Turbulence modeling

In accord with the standard approach to turbulence modeling based upon the Boussinesq hypothesis,98 which
states that the effect of turbulence can be represented as an increased viscosity, the total viscosity is divided
into a laminar, µdyn, and a turbulent, µtur, component. The laminar, or dynamic, viscosity is usually taken
to be a function of temperature only, µdyn = µdyn(T), whereas µtur is obtained from a suitable turbulence
model involving the flow state, and a set of new variables.

Spalart-Allmaras (S-A) Model: In the case of the one-equation Spalart-Allmaras84 turbulence model,
the turbulent viscosity is computed as

µtur = ρν̂fv1, fv1 =
χ
3

χ3 + c
3
v1

, χ =
ν̂

ν
, ν =

µdyn

ρ
. (5)

The new variable ν̂ is obtained by solving a transport equation where the convective, viscous, and source
terms are given as follows:

�F
c = �vν̂, �F

v = −
ν + ν̂

σ
∇ν̂, Q = cb1Ŝν̂ − cw1fw

�
ν̂

dS

�2

+
cb2

σ
|∇ν̂|

2
, (6)

where the production term Ŝ is defined as Ŝ = |�ω| + ν̂

κ2d2
S
fv2 , �ω = ∇ × �v is the fluid vorticity, dS is the

distance to the nearest wall, and fv2 = 1 −
χ

1+χfv1
. The function fw is computed as fw = g

�
1+c

6
w3

g6+c
6
w3

�1/6
,

where g = r + cw2(r6 − r) and r = ν̂

Ŝκ2d2
S

. Finally, the set of closure constants for the model is given by

σ = 2/3, cb1 = 0.1355, cb2 = 0.622, κ = 0.41, cw1 =
cb1

κ2
+

1 + cb2

σ
, cw2 = 0.3, cw3 = 2, cv1 = 7.1. (7)

The physical meaning of the far-field boundary condition for the turbulent viscosity is the imposition of
some fraction of the laminar viscosity at the far-field. On viscous walls, ν̂ is set to zero, corresponding to
the absence of turbulent eddies very near to the wall.

Menter Shear Stress Transport (SST) Model: The Menter SST turbulence model62 is a two equa-
tion model for the turbulent kinetic energy k and specific dissipation ω that consists of the blending of the
traditional k − ω and k − � models. The definition of the eddy viscosity, which includes the shear stress
limiter, is shown below.

µtur =
ρa1k

max(a1ω, SF2)
. (8)

where S =
�

2SijSij and F2 is the second blending function.
The convective, viscous and source terms for the turbulent kinetic energy follow,

�F
c = ρk�v, �F

v = −(µdyn + σkµtur)∇k, Q = P − β
∗
ρωk, (9)

15 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

where P is the production of turbulent kinetic energy. The convective, viscous and source terms for the
specific dissipation follow,

�F
c = ρω�v, �F

v = −(µdyn + σωµtur)∇ω, Q =
γ

νt
P − β

∗
ρω

2 + 2 ∗ (1− F1)
ρσω2

ω
∇k∇ω, (10)

where F1 is the first blending function.
The values for the constants and the forms for the blending functions and auxiliary relations are detailed

in Rumsey76 and Menter.62 The Menter SST and the S-A turbulence models are the two most common
and widely used RANS models for the analysis and design of engineering applications affected by turbulent
flows.

4. Transition model

The γ − Reθt − SA transition model61 is an adaptation of the model of Langtry and Menter.51 It is a
correlation-based model that augments the Spalart-Allmaras turbulence model with two equations. The
first is for intermittency, γ, a quantity that varies from 0 in laminar regions to 1 in fully turbulent regions
of the flow. The convective, viscous, and source terms for the transport of γ are

�F
c = ργ�v, �F

v = −

�
µdyn +

µtur

σf

�
∇γ, Q = Pγ −Dγ , (11)

where the source terms Pγ and Dγ are obtained from correlations. The second equation is for local onset
momentum thickness Reynolds number, Reθt. Its convective, viscous, and source terms are

�F
c = ρReθt�v,

�F
v = −σθt(µdyn + µtur)∇Reθt, Q = Pθt, (12)

where once again the production term Pθt is obtained from correlation.
The source terms for the Spalart-Allmaras equation are modified to depend on intermittency as follows

Q = γeffcb1Ŝν̂ −max(min(γ,β), 1.0)

�
cw1fw

�
ν̂

dS

�2
�
+

cb2

σ
|∇ν̂|

2
. (13)

For details, including correlations and closure constants, the reader is referred to Medida et al.61 and
Langtry et al.51

5. Rotating frame and Arbitrary Lagrangian-Eulerian (ALE) formulations

When simulating fluid flow about certain aerodynamic bodies that operate under an imposed steady rotation,
including many turbomachinery, propeller, and rotor applications, it can be advantageous to transform the
system of flow equations into a reference frame that rotates with the body of interest.19,20,29 With this
transformation, a flow field that is unsteady when viewed from the inertial frame can be solved for in a
steady manner, and thus more efficiently, without the need for grid motion.

After performing the appropriate transformation into a reference frame that rotates with a steady angular
velocity, �ω = (ω1,ω2,ω3) ∈ R3, and a specified rotation center, �ro = (xo, yo, zo) ∈ R3, the convective fluxes
of the compressible equations are modified and a new source terms appears as

�F
c =




ρ(�v − �ur)

ρ�v ⊗ (�v − �ur) +
¯̄
IP

ρH(�v − �ur) + P�ur



 , Q =




0

−ρ(�ω × �v)

0



 ,

where ρ is the fluid density, �v = (v1, v2, v3) ∈ R3 is the absolute flow velocity, H is the total enthalpy per unit
mass, P is the static pressure, and �ur is the velocity due to rotation (�ur = �ω×�r). Here, �r is the position vector
pointing from the rotation center to a point (x, y, z) in the flow domain, or �r = ((x− xo), (y− yo), (z − zo)).
The velocity due to rotation is also sometimes called the whirl velocity. The viscous terms remain the same
as in the inertial frame. The modified flow tangency wall boundary condition is (�v− �ur) ·�nS = 0 for inviscid
flows, where �nS is the unitary normal vector to the surface S, and the no-slip wall boundary condition is
�v = �ur.

16 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

It is important to note that not all simulations of rotating bodies can benefit from this solution approach.
The flow field must be steady in the rotating frame, and some conditions or geometric features, such as
relative surface motion, can cause unsteadiness for rotating bodies. Furthermore, many unsteady flows of
interest, such as pitching, plunging, or rotating surfaces, require solutions on arbitrarily moving grids. For
that reason, an Arbitrary Lagrangian-Eulerian (ALE) formulation21,31 has also been implemented in SU2.
In this formulation, the convective fluxes are adjusted to take into account the grid motion:

�F
c =




ρ(�v − �ux)

ρ�v ⊗ (�v − �ux) +
¯̄
IP

ρE(�v − �ux) + P�v



 , (14)

where �ux is the local velocity for a domain in motion. The viscous terms again remain the same as in the
fixed domain, but unlike the rotating frame formulation, there is no additional source term. The modified
flow tangency wall boundary condition is (�v − �ux) · �nS = 0 for inviscid flows, and the no-slip wall boundary
condition is �v = �ux.

B. Free-surface solver

The free-surface solver in SU2 is based on the incompressible solver while allowing the density and the
viscosity to change depending on the location of the free-surface. To identify the free-surface, a level set81

function, φ, is used to track the interface between the gas and the liquid.68,85 In particular, the interface
will be the zero level set of φ, and the level set function will be positive in the gas and negative in the liquid.
The level set variable, φ, should satisfy the following transport equation (written in terms of our baseline
model):

�F
c(�v,φ) = φ�v, Q = (φ− φ0) ξ, (15)

where φ0 = φ0(�x) is the initial distance from the free-surface to the boundaries and ξ is a damping factor
only activated near the inlet and outlet. The level set equation simply states that the interface moves with
the fluid. The values of the density and laminar viscosity are defined using an approximation of the Heaviside
function H = H(φ, �):

H(φ) =






1 if φ < −�,

1− 1
2

�
1 + φ

�
+ 1

π
sin(πφ/�)

�
if |φ| ≤ �,

0 if φ > �,

(16)

where � is a measure of the interface thickness. Finally, density and viscosity are computed as:

ρ(φ) = H(φ) +

�
ρg

ρl

�
(1−H(φ)), µ(φ) = H(φ) +

�
µg

µl

�
(1−H(φ)), (17)

where the subscripts g and l denote gas and liquid, respectively.

C. Wave equation

1. Ffowcs Williams-Hawkings (FW-H) equation

For aeroacoustic problems, perturbations in density, ρ
� where ρ

�(�x, t) = ρ(�x, t) − ρ∞ being ρ∞ the flow
density at the infinity, form the longitudinal waves that are perceived as sound. Consider an aerodynamic
body immersed in an unbounded volume of fluid, Ω. A fictitious, near-field control surface, Γnf , is placed near
the body, and the fluid domain is therefore divided into two regions, labeled Ω1 and Ω2. As a mathematical
convenience, we define the shape of Γnf by a function, f = 0, such that f < 0 inside the body and
f > 0 outside the body. We also assume that ∇(f) is in the direction of the outward normal, such that
∇(f) = �nΓnf |∇(f)|. Furthermore, Γnf can be in motion with arbitrary boundary velocity, �ub.

Following the derivation by Ffowcs Williams and Hawkings,23 the permeable surface version of the FW-H
equation can be formulated as

∂
2
ρ
�

∂t2
− c

2
∇

2
ρ
� =

∂

∂t
{[ρ(�v − �ub) + ρ∞�ub] ·∇(f)δ(f)}

− ∇ ·

��
ρ�v ⊗ (�v − �ub) +

¯̄
Ip

�
�
·∇(f)δ(f)

�
+∇

2T in Ω, t > 0, (18)

17 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

where, in this case, δ(f) is the Dirac delta function involving the near-field surface. The nomenclature

[](2)(1) represents the jump between regions Ω2 and Ω1. The terms appearing on the right hand sides can be
thought of as sources concentrated at the surface, Γnf , which are required to maintain conservation for the

unbounded fluid. The speed of sound c is taken as a constant, and T = ρ�v ⊗ �v + P −
¯̄
Ia

2
ρ
� is the Lighthill

stress tensor that represents the difference between the stress state in the real fluid and that in the acoustic
medium.

Here we see that the propagation of sound generated by aerodynamic surfaces in arbitrary motion is
governed by the wave equation, and the sound generation processes are composed of three types of sources
on the right hand side: a mass displacement effect by the surface with monopole character (thickness noise,
first term), a surface distribution of dipoles (loading noise, second term), and a distribution of quadrupole
noise sources throughout the volume exterior to the surface (third term). For simplicity, the source terms
will be lumped together as a single term, Q, giving the following expression for the convective, viscous, and
source terms:

U =

�
ρ
�

ξ

�
, �F

v

i
=

�
·

c
2
∂iρ

�

�
, Q =

�
ξ

Q

�
, i = 1, . . . , 3 (19)

where the time discretization is performed by splitting the original equation into two partial differential
equations and only a first order time derivative appears.

2. Linear elasticity equation

The equations of linear elasticity100 govern small displacements, V = (u1, u2, u3)T , of an elastic solid subject
to body forces and surface tractions. If the inertial terms are included, the linear elasticity equation can be
written as

∂
2
V

∂t2
−∇σ = f in Ω, t > 0, (20)

with f being a body force and σ the stress tensor given in terms of the strain tensor, �, by the constitutive
relation

σ = λTr(�)I + 2µ�, � =
1

2
(∇u+∇u

T), λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (21)

where Tr is the trace, λ and µ are the Lamé constants, E is the Young’s modulus, and ν is Poisson’s ratio.
E > 0 may be thought of as the stiffness of the material, where a large value of E indicates rigidity. Poisson’s
ratio, ν, is a measure of how much the material shrinks in the lateral direction as it extends in the axial
direction. The following expression for the convective, viscous, and source terms will be used:

U =





u1

u2

u3

ξ1

ξ2

ξ3





, �F
v

i
=





·

·

·

σi1

σi2

σi3





, Q =





ξ1

ξ2

ξ3

f1

f2

f3





. i = 1, . . . , 3 (22)

where the time discretization is performed by splitting the original equation into two partial differential
equations and only a first order time derivative appears.

D. Heat equation

The heat equation describes the distribution of heat in a given region over time. Using the baseline equation,
the different terms of the heat equation are

U = T, �F
v

i
= α∂iT, Q = q, i = 1, . . . , 3 (23)

where T is the temperature, q is a heat source, and α = k/Cpρ is the thermal diffusivity, a material-specific
quantity depending on the thermal conductivity k, the mass density ρ, and the specific heat capacity Cp.
Dirichlet or Neumann boundary conditions are admissible in this model.

18 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

E. Gauss’s law

Gauss’s law is a part of the Maxwell’s equations and relates the distribution of electric charge to the resulting
electric field. Using the baseline equation, the different terms of the Gauss’s law equation are

�F
v = − �E, Q =

ρ

�0
, (24)

where �E is the electric field, ρ is the net electric charge density, and �0 is the permittivity of free space.
Dirichlet or Neumann boundary conditions are admissible in this model.

F. Plasma equations

Due to the complexity of the plasma model chosen for use in SU2, in this section we will present only a
basic description, and the interested reader is referred to several publications using the present formula-
tion.3,10,16,52,54,57,70,92 SU2 solves a full set of flow equations for each chemical species in the plasma and
does not use any diffusion models to calculate species velocity. The flow equations are tightly coupled with
Gauss’s law for calculation of the electric field generated by any local separation of charge. Given a plasma
with nS number of chemical species, the different terms are given as:

U =





U1

U2
...

UnS




, �F

c =





�F
c

1
�F
c

2
...

�F
c

nS




, �F

v =





�F
v

1
�F
v

2
...

�F
v

nS




, Q =





Q1

Q2
...

QnS




, (25)

where the conservative variables are Us = (ρs, ρs�us, ρsEs, ρsevs)
T and

�F
c

s
=





ρs�us

ρs�us ⊗ �us +
¯̄
Ips

ρsHs�us

ρsevs�us + qvs




, �F

v

s
=





·

¯̄τs
¯̄τs · �us + ks

�∇Ts

·




, Qs =





ẇs

�Qu,s + �Femf,s

�Qu,s · �us +QT,s +Wemf,s

Qv,s + ẇsevs




, (26)

where the vector of source terms, Q, includes the effects of finite rate chemistry, momentum, and energy
exchange by collision and electromagnetic fields. The rate of production of mass by finite rate chemistry is
given by ẇs, the rate of momentum exchange per unit volume by inter-species collision is �Qu,s and QT,s is
the rate of energy transfer per unit volume by inter-species collision. Qv,s is the rate of vibrational energy by
inter-species collision between diatomic species. The momentum transfer per unit volume by force exerted
on charged particles in the presence of electromagnetic fields is given by �Femf,s, and the term Wemf,s is the
work done per unit volume in this process.

The plasma solver in SU2 supports the following boundary conditions: Euler (flow tangency), and sym-
metry wall, no-slip (adiabatic, isothermal and catalytic), far-field and near-field characteristics and periodic
boundary conditions. A detailed description of each of these terms and the catalytic wall boundary condition
for this particular formulation of the governing equations wherein a full set of flow equations is solved for
each species has been given by Lonkar et al.,54 and Copeland et al.16

19 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

IV. Numerics

In this section, the main numerical algorithms of SU2 will be described with a particular emphasis on
the fluid dynamics solver, the grid adaptation capability, and the design methodology.

A. Space integration

Partial Differential Equations (PDEs) in SU2 are discretized using a finite volume method5,28,34–36,53,73,87,96

(a finite element method is also available) with a standard edge-based structure on a dual grid with control
volumes constructed using a median-dual, vertex-based scheme as shown in Fig. 6. Median-dual control
volumes are formed by connecting the centroids, face, and edge-midpoints of all cells sharing the particular
node. The semi-discretized integral form of a typical PDE (like those described in the modeling section) is
given by, �

Ωi

∂U

∂t
dΩ+

�

j∈N (i)

(F̃cij + F̃vij)∆Sij −Q|Ωi| =

�

Ωi

∂U

∂t
dΩ+Ri(U) = 0, (27)

where U is a vector of state variables, and Ri(U) is the residual. F̃cij and F̃vij are the projected numerical
approximations of the convective and viscous fluxes, respectively, and Q is a source term. ∆Sij is the area
of the face associated with the edge ij, Ωi is the volume of the control volume and N (i) are the neighboring
nodes to node i.

Figure 6. Schematic of the primal mesh and the control volume on a dual mesh.

The convective and viscous fluxes are evaluated at the midpoint of an edge. The numerical solver loops
through all of the edges in the primal mesh in order to calculate these fluxes and then integrates them to
evaluate the residual at every node in the numerical grid. In the following subsections, some of the most
important numerical algorithms in SU2 will be described.

1. Integration of convective fluxes

The convective fluxes can be discretized using central or upwind methods in SU2. Several numerical schemes
have been implemented (JST, Lax-Friedrich, Roe, AUSM, HLLC, Roe-Turkel), but this section will focus on
two classic numerical schemes (Roe and JST).

The flux-difference-splitting scheme by Roe75 evaluates the convective fluxes from flow quantities recon-
structed separately on both sides of the face of the control volume from values at the surrounding nodes:

F̃cij = F̃ (Ui, Uj) =

�
�F
c

i
+ �F

c

j

2

�
· �nij −

1

2
P |Λ|P−1(Ui − Uj), (28)

where �nij is the outward unit normal associated with the face between nodes i and j, Ui is the vector of

the conserved variables at point i and �F
c

i
is the convective flux at node i. P is the matrix of eigenvectors of

the flux Jacobian matrix, constructed using the Roe averaged variables and projected in the �nij direction,
and |Λ| is a diagonal matrix with entries corresponding to the absolute value of the eigenvalues of the flux
Jacobian matrix. This discretization is first-order accurate in space. Second-order accuracy is easily achieved
via reconstruction of variables on the cell interfaces by using a Monotone Upstream-centered Schemes for
Conservation Laws (MUSCL) approach91 with gradient limitation.

20 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

The JST scheme41 uses a blend of two types of artificial dissipation that are computed using the differences
in the undivided Laplacians (higher-order) of connecting nodes and the difference in the conserved variables
(lower-order) on the connecting nodes. The two levels of dissipation are blended by using the typical
pressure switch for triggering lower-order dissipation in the vicinity of shock waves. The final expression for
the numerical flux using the JST method on unstructured meshes is:

F̃cij = F̃ (Ui, Uj) = �F
c

�
Ui + Uj

2

�
· �nij − dij . (29)

The artificial dissipation dij along the edge connecting nodes i and j can be expressed as

dij =
�
ε
(2)
ij

(Uj − Ui)− ε
(4)
ij

(∇2
Uj −∇

2
Ui)

�
ϕijλij , (30)

where the undivided Laplacians, local spectral radius, stretching in the grid and pressure switches are
computed as

∇
2
Ui =

�

k∈N (i)

(Uk − Ui), (31)

λij = (|uij · �nij |+ cij)∆S, λi =
�

k∈N (i)

λik, (32)

ϕij = 4
ϕiϕj

ϕi + ϕj

, ϕi =

�
λi

4λij

�p

, (33)

ε
(2)
ij

= κ
(2)

s2





������

�

k∈N (i)

(pk − pi)

������
/

�

k∈N (i)

(pk + pi)



 , ε
(4)
ij

= s4 max
�
0,κ(4)

− ε
(2)
ij

�
, (34)

where N (i) represents the set of neighboring points to node i, pi is the pressure at node i, s2 and s4 are
stretching parameters and κ

(2), κ(4) are adjustable parameters.

2. Integration of viscous fluxes

In order to evaluate the viscous fluxes using a finite volume method, flow quantities and their first derivatives
are required at the faces of the control volumes. The values of the flow variables, including the velocity
components, the dynamic viscosity µ and the heat conduction coefficient k, are averaged at the cell faces in
SU2.

The gradients of the flow variables are calculated using either a Green-Gauss or least-squares method
at all grid nodes and then averaged to obtain the gradients at the cell faces. The following correction95 is
applied in order to reduce the truncation error of the scheme:

∇φ · �n =
φj − φi

|xj − xi|
αf +

1

2
(∇φ|i +∇φ|j) · (�n− αf�s), (35)

where �n is the face normal, �s is the normalized vector connecting the cell centroid across the face, |xj − xi|

is the distance between node i and j and αf is chosen to be the dot product αf = �s ·�n. Again, the gradients
∇φ|i at node i are computed using either the Green-Gauss or least-squares theorems.

A Finite Element Method (FEM) is also available to numerically evaluate the Laplacian operator. Finite
element methods are based upon approximations to a variational formulation of the problem. A variational
formulation requires the introduction of a space of trial functions, T = {V (t, �x)}, and a space of weighting
functions, W = {W (t, �x)}. The problem consists of finding V (t, �x) in T satisfying the problem boundary
conditions, such that �

Ω
W

T
�
∇

2
V
�
dΩ = 0. (36)

To produce an approximate solution to the variational problem, a grid of finite elements is constructed
on the domain, Ω. It will be assumed that the discretization employs p nodes. Finite-dimensional subspaces
T (p) and W(p) of the trial and weighting function spaces, respectively, are defined by

T
(p) =

�
V

(p)(�x) |V (p) =
p�

J=1

VJNJ(�x)

�
, W

(p) =

�
W

(p)(�x) |W (p) =
p�

J=1

aJNJ(�x)

�
, (37)

21 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

where VJ is the value of V (p) at node J . On the other hand, a1, a2, . . . , ap are constant and NJ(�x) is the
piecewise linear trial function associated with node J . We now apply the finite element approximation
by discretizing the domain of the problem into elements and introducing functions which interpolate the
solution over nodes that compose the elements. The Galerkin approximation is determined by applying the
variational formulation of Eq. 36 in the following form: find V

(p) in T (p), satisfying the problem boundary
conditions, such that �

Ω
N

T

I

�
∇

2
V
�
dΩ = 0, (38)

for I = 1, 2, ..., p. The form assumed for V (p) in Eq. 37 can now be inserted into the left hand side of Eq. 38
and the result can be written as

�

Ω
N

T

I

�
p�

J=1

VJ∇
2
NJ

�
dΩ =

p�

J=1

VJ

��

Ω
N

T

I
∇

2
NJ dΩ

�
= 0. (39)

Applying the divergence theorem gives

p�

J=1

VJ

��

Γ
N

T

I
(∇NJ · �ν) dΓ−

�

Ω
∇N

T

I
·∇NJ dΩ

�
= 0, (40)

where �ν is the outward unit normal associated with the control volume surface and the boundary integral
disappears unless we are computing a boundary element with non-homogeneous Neumann conditions (I is
an exterior node). The result at a typical interior node I is

�

E∈I

�

J∈E

VJ

��

ΩE

∇N
T

I
·∇NJ dΩ

�
= 0, (41)

where the first summation extends over the elements E in the numerical grid which contain node I and the
second summation extends over nodes J of the elements E. ΩE is the portion of Ω which is represented by
element E.

3. Source term integration

Source terms are approximated using piecewise constant reconstruction within each of the finite volume cells.
The source terms plays a fundamental role in plasma simulations (chemical reactions), free-surface problems
(gravity effects), or in the formulation of turbulence and transition models.

B. Time integration

1. Steady simulations

It is well known that Eq. 27 has to be valid over the whole time interval, so one has to make the choice of
evaluating Ri(U) either at time t

n (explicit methods) or tn+1 (implicit methods). Focusing on the implicit
integration (SU2 also has a Runge-Kutta explicit method), the easiest way to discretize the system is by
using an implicit Euler scheme which can be written as

�

Ωi

∂U

∂t
dΩ+Ri(U) ≈ |Ωi|

dUi

dt
+Ri(U) = 0 →

|Ωn

i
|

∆t
n

i

∆U
n

i
= −Ri(U

n+1), (42)

where ∆U
n

i
= U

n+1
i

− U
n

i
. However, the residuals at time n+ 1 are unknown, and linearization about tn is

needed:

Ri(U
n+1) = Ri(U

n) +
∂Ri(Un)

∂t
∆t

n

i
+O(∆t

2) = Ri(U
n) +

�

j∈N (i)

∂Ri(Un)

∂Uj

∆U
n

j
+O(∆t

2). (43)

Finally, the following linear system should be solved to find the solution update (∆U
n

i
),

�
|Ωi|

∆t
n

i

δij +
∂Ri(Un)

∂Uj

�
·∆U

n

j
= −Ri(U

n), (44)

22 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

where if a flux F̃ij has a stencil of points {i, j}, then contributions are made to the Jacobian at four points:

∂R

∂U
:=

∂R

∂U
+





. . .
∂F̃ij

∂Ui
· · ·

∂F̃ij

∂Uj

...
. . .

...

−
∂F̃ij

∂Ui
· · · −

∂F̃ij

∂Uj

. . .





. (45)

Note that, despite implicit schemes being unconditionally stable in theory, a specific value of∆t
n

i
is needed

to relax the problem. SU2 uses a local-time-stepping technique to accelerate convergence to a steady state.
Local-time-stepping allows each cell in the mesh to advance at a different local time step. Calculation of the
local time step requires the estimation of the eigenvalues and first-order approximations to the Jacobians at
every node i according to

∆ti = NCFL min

�
|Ωi|

λ
conv

i

,
|Ωi|

λ
visc

i

�
, (46)

where NCFL is the Courant-Friedrichs-Lewy (CFL) number, |Ωi| is the volume of the cell i and λ
conv

i
is the

integrated convective spectral radius22 computed as

λ
conv

i
=

�

j∈N (i)

(|�uij · �nij |+ cij)∆S, (47)

where �uij = (�ui + �uj)/2, and cij = (ci + cj)/2 denote the velocity and the speed of sound at the cell face.
�nij denotes the normal direction of the control surface and ∆S, its area. On the other hand, the viscous
spectral radius λvisc

i
is computed as

λ
visc

i
=

�

j∈N (i)

C
µij

ρij
S
2
ij
, (48)

where C is a constant, µij is the sum of the laminar and eddy viscosities in a turbulent calculation and ρij

is the density evaluated at the midpoint of the edge ij.

2. Unsteady simulations

A dual time-stepping strategy33,40 has been implemented to achieve high-order accuracy in time. In this
method, the unsteady problem is transformed into a steady problem at each physical time step which can
then be solved using all of the well known convergence acceleration techniques for steady problems. The
current implementation of the dual-time stepping approach solves the following problem

∂U

∂τ
+R

∗(U) = 0, (49)

where

R
∗(U) =

3

2∆t
U +

1

|Ω|n+1

�
R(U)−

2

∆t
U

n
|Ω|n +

1

2∆t
U

n−1
|Ω|n−1

�
, (50)

where ∆t is the physical time step, τ is a fictitious time used to converge the steady state problem, R(U)
denotes the residual of the governing equations, and U = U

n+1 once the steady problem is satisfied.

3. Linear solvers

The SU2 framework includes the implementation of several linear solvers for solving Eq. 44. Specifically, the
following methods are available:

• The Lower-Upper Symmetric-Gauss-Seidel (LU-SGS) method.42,45,99 This is a stationary iterative
method that is based on a measurement of the error in the result (the residual) which is used to form
a “correction equation”.

23 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

• The Generalized Minimal Residual (GMRES) method,77 which approximates the solution by the vector
in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector.

• The Biconjugate Gradient Stabilized (BiCGSTAB) method,90 also a Krylov subspace method. It is a
variant of the biconjugate gradient method (BiCG) and has faster and smoother convergence properties
than the original BiCG.

C. Convergence acceleration techniques

In this section some of the most important convergence acceleration techniques of SU2 will be described:
Multigrid and linelet techniques, followed by Roe-Turkel preconditioning for low Mach number flows. It is
fundamental to note that, due to the modular structure of SU2, these methods are shared by all the solvers
in the code.

1. Nonlinear multigrid method

The multigrid method generates effective convergence at all length scales of a problem by employing a
sequence of grids of varying resolution. Simply stated, the main idea is to accelerate the convergence of the
numerical solution of a set of equations by computing corrections to the fine-grid solutions on coarser grids
and applying this idea recursively.7,39,58,59,66 It is well know that, owing to the nature of most iterative
methods/relaxation schemes, high-frequency errors are usually well damped, but low-frequency errors (global
error spanning the solution domain) are less damped by the action of iterative methods that have a stencil
with a local area of influence.

The basic methodology is described below. Consider the nonlinear problem L(u) = f defined in a domain
Ω, and denote its discretization on a fine grid with spacing h as

Lh(uh) = fh, in Ωh, (51)

where Lh(·) is a nonlinear discrete operator defined in Ωh. The starting point is the definition of a suitable
smoother (e.g. LU-SGS, GMRES, etc.) and, after a small number of iterations of this method (possibly a
single one, instead of fully solving the discrete equation), an approximate solution ūh, and residual rh, are
obtained on the fine grid. The resulting equation on the fine grid can be written as

Lh(ūh)− fh = rh. (52)

Subtracting Eq. 52 from Eq. 51, we obtain the following expression to be approximated on a coarse grid:

Lh(uh)− Lh(ūh) = −rh, (53)

where the exact solution uh can be expressed as the approximate solution ūh plus a correction ch yielding:

Lh(ūh + ch)− Lh(ūh) = −rh. (54)

Note that no assumptions about the linearity of the operator L(·) (or its discrete version) are made. As
we stated before, the objective is to write Eq. 54 on a coarse grid of spacing H. In order to do that, two
types of restriction operators will be defined: IH

h
, the restriction operator that interpolates the residual from

the fine grid h to the coarse grid H (in a conservative way), and Ī
H

h
, which simply interpolates the fine-grid

solution onto the coarse grid. Formulating Eq. 54 on the coarse level by replacing Lh(·) with LH(·), ūh with
Ī
H

h
ūh, and rh with I

H

h
rh, we obtain the FAS equation:

LH(ĪH
h
ūh + cH)− LH(ĪH

h
ūh) = −I

H

h
rh. (55)

In this last expression, the approximate solution on the coarse grid is denoted as ūH := Ī
H

h
ūh + cH and

the residual rh can be written as Lh(ūh)− fh. Finally we obtain the following useful equation on the coarse
level:

LH(ūH) = LH(ĪH
h
ūh)− I

H

h
(Lh(ūh)− fh) = fH + τ

H

h
, in ΩH , (56)

where the source term on the coarse levels is interpolated fH = I
H

h
fh (not computed), and a new variable

τ
H

h
= LH(ĪH

h
ūh)− I

H

h
(Lhūh) is defined as the fine-to-coarse defect or residual correction. Note that without

the τ
H

h
term, the coarse grid equation is the original system represented on the coarse grid.

24 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

The next step is to update the fine grid solution. For that purpose, the coarse-grid correction cH (which
in principle is smooth because of the application of the smoothing iteration) is interpolated back on to the
fine grid using the following formula

ū
new

h
= ū

old

h
+ I

h

H
(ūnew

H
− Ī

H

h
ū
old

h
), (57)

where I
h

H
is a prolongation operator that interpolates the coarse-grid correction onto the fine grid. Note

that we interpolated the correction and not the coarse-grid solution itself. In this brief introduction to the
method, only two grids have been considered. In real problems, however, the algorithm is applied in a
recursive way using different grid level sizes to eliminate the entire spectrum of frequencies of the numerical
error.

Because of their structured-grid heritage, multigrid methods have traditionally been developed from a
geometric point of view. The agglomeration multigrid technique developed in SU2 is based on the agglom-
eration of fine-grid control volumes to create a coarse-grid structure. There are multiple criteria that should
be observed to increase the quality of the agglomerated grid. But, in all cases, the basic idea is to maintain
as much as possible the quality of the finer grid in the agglomerated levels. In other words, if the finer
grid has good orthogonality and stretching properties, the coarse levels should preserve those properties. In
particular, three aspects have been carefully treated: selection of the seed control volume, preservation of
the stretching and volume constraints, agglomeration of indirect neighbors in structured grids.

In order to choose the seed control volume in the agglomeration process, the first step is the creation
of an agglomeration priority list based on geometrical properties of the grid surfaces (i.e., a vertex has the
highest priority, then common edges between surfaces and finally solid surfaces). It is important to note that
far-field, inlet or outlet surfaces always have the lowest priority among the surfaces. Once the geometrical
division is done, the control volumes with the same geometrical priority should be divided into different
groups depending on the number of neighbors that have been previously agglomerated.

The algorithm will choose the first control volume with the highest priority as a seed point. Once the
seed point is agglomerated with its neighbors, it is removed from the queue, and its neighbors increase in
priority. Apart from the seed selection criteria, there are some situations in which a control volume cannot
be agglomerated with its neighbors. In particular, three basic constraints have been implemented in the
agglomeration process:

• The stretching of the agglomerated control volume is limited by a percentage of the stretching of the
original fine grid control volume.

• The volume of the agglomerated element should be less than a percentage of the total volume of the
computational grid.

• There is a maximum number of control volumes that can be agglomerated to the original element.

The last two criteria are easy to implement and they do not required further description. With respect
to the stretching factor, it is computed by comparing the maximum and minimum distance between control
points connected to the reference control volume. The stretching factor should be computed on the finer
grid and copied to all coarse levels as reference value in the agglomeration process.

To maintain the quality for structured grids (finest level), the agglomeration of the indirect neighbors
(control volumes that have a vertex in common with the seed control volume) is critical. In this particular
algorithm the structured part of the grid is identified, and the indirect neighbors of an element will be added
to the new agglomerated control volume. Information about the control volume relationship structure is
copied from the finest grid to the coarse levels.

2. Linelet preconditioning

Preconditioning is the application of a transformation to the original system that makes it more suitable for
numerical solution.71 In particular, a linelet preconditioner has been implemented to improve the convergence
rate of the Krylov subspace linear solvers. The key59,83 is to construct lines in the mesh in the direction
normal to the grid stretching. The preconditioning matrix is built by assembling the diagonal entries of the
system matrix and the non-diagonal entries of the edges that belong to these linelets. If the appropriate
numbering is used, a block tridiagonal matrix is obtained, and the preconditioned system can be directly

25 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

inverted using the Thomas algorithm. Note that in those zones where linelets are not defined, a Jacobi
preconditioner is used.

In summary, in order to solve the system Ax = b using a preconditioned Krylov subspace method, it is
necessary to solve (twice in each iteration) a system of equations of the form Pz = r, where P is the linelet
preconditioner. The steps of the algorithm are:

1. Build grid lines (linelets) in the direction normal to the grid stretching.

2. Build the preconditioner matrix: assemble the diagonal and the non-diagonal entries (linelets) of the
Jacobian matrix.

3. Nodal renumbering following the linelets to obtain a tridiagonal structure for the preconditioner.

4. Use the preconditioned formulation of the iterative scheme.

5. Solve the tridiagonal system for the linelets using the Thomas algorithm (direct method).

The linelet creation begins with the identification of all the points that are on the solid surface of the
geometry (where boundary layers and/or wakes are likely to exist) and the computation of an edge weight
for each vertex on the surface. This weight is computed as

wij =
1

2
∆Sij

�
1

|Ωi|
+

1

|Ωj |

�
, (58)

where ∆Sij is the area of the face that separates nodes i and j and |Ωi| is the volume of the control volume
associated with each node. The line is built by adding to the original vertex the one which is most strongly
connected to it (maximum value of the weight). This new vertex is added only if it has not already been added
to another linelet and if the weight is greater than a certain quantity that is used to mark the termination
of the linelet. When an entire line is completed, the procedure is repeated starting with another vertex on
the surface.

Once the list of linelets is built, the nodal points must be renumbered following the linelets to obtain the
desired tridiagonal structure of the preconditioner. First, the nodes of a single linelet are renumbered from
one end to the other, then a second linelet is renumbered, and so on until all linelets have been covered.
Finally, the rest of the points also have to be renumbered to accommodate the renumbering of the vertices
that belong to the collection of linelets that have been identified.

The final step is to solve the system Pz = r using the Thomas’ algorithm. The preconditioner matrix is
decomposed into upper- and lower-triangular matrices U and L. Once those matrices have been obtained,
the solution of the system Pz = r is computed by performing the following substitutions:

yi = ri − Liyi−1, (y1 = r1), i = 2, ..., n; (59)

zi = U
−1(yi − Fizi+1), (zn+1 = 0), i = n, ..., 1. (60)

It is important to highlight that the LU decomposition is done only once and can be done on a per-linelet
basis. On the other hand, an LU factorization is performed at each block of the implicit block matrix to
compute its inverse. Owing to the particular renumbering chosen where a linelet is not defined, a Jacobi
preconditioner is recovered by default.

3. Roe-Turkel low Mach number preconditioning

Numerical discretization of the governing fluid dynamic equations using a conservative formulation often
results in excess artificial viscosity at low Mach numbers. This degrades the performance of a compressible
solver in regions of low Mach number flow. Preconditioning techniques such as Roe-Turkel89 have been
developed for solving nearly incompressible flow problems using the same numerical methods developed for
compressible flows. This can be particularly useful when only part of a flow field is essentially incompressible.
For example, flow over a multi-element airfoil at high angles of attack has regions of both compressible and
incompressible flow. Furthermore, flows around re-entry vehicles moving at hypersonic speeds are often
chemically dissociated into several species moving hypersonically, except the electron species which, owing
to their small mass, have a very small (often less than 0.01) Mach number.

26 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

The poor convergence of the standard discretization methods at low Mach numbers is due to an incorrect
scaling of the artificial viscosity as the Mach number tends to zero. Turkel proposed88,93 a correction to
the convective flux discretization method which involves modifying the artificial viscosity for correct scaling
at low Mach numbers using a preconditioning matrix. The Roe-Turkel technique is a modification to the
standard Roe scheme involving a preconditioner activated in regions of low Mach numbers. Eq. 61 shows
the modification of the artificial viscosity with a preconditioning matrix Pc.

F̃RT (Ui, Uj) =

�
�F
c

i
+ �F

c

j

2

�
· �nij −

1

2
P

−1
c

|PcÂ|(Ui − Uj), (61)

where it is important to highlight that this technique does not hamper the time accuracy of results and can
be used for unsteady problems.

D. Mesh manipulation

1. Dynamic meshes for unsteady simulations

Unsteady simulations with surfaces in motion can be performed by solving the ALE form of the governing
equations along with a suitable method for moving the surfaces and mesh while computing mesh velocities.
A straightforward method is the use of rigid motion of the entire domain, where there is no relative motion
between individual grid nodes. Rigid rotational and translational motion for a mesh node with each physical
time step can be generally described by

�x
n+1 = R �x

n +∆�x, (62)

where �x
n = {x, y, z}T is the current node position in Cartesian coordinates, �x n+1 is the updated node

location at the next physical time instance, ∆�x is a vector describing the translation of the nodal coordinates
between time steps, and in three dimensions, the rotation matrix, R, is given by

R =




cos θy cos θz sin θx sin θy cos θz − cos θx sin θz cos θx sin θy cos θz + sin θx sin θz
cos θy sin θz sin θx sin θy sin θz + cos θx cos θz cos θx sin θy sin θz − sin θx cos θz
− sin θy sin θx cos θy cos θx cos θy



 (63)

with ∆�θ = {θx, θy, θz}
T being equal to the change in angular position of the nodal coordinates about a

specified rotation center between time t
n+1 and t

n. Note that this matrix is formed by assuming positive,
right-handed rotation first about the x-axis, then the y-axis, and finally the z-axis. The general form of
Eqn. 62 supports multiple types of motion, including constant rotational or translational rates, pitching, or
plunging. With each physical time step, the values of ∆�θ and ∆�x are computed and Eqn. 62 is applied at
each node of the mesh.

For all types of rigid mesh motion, the local grid velocity at a node, �ux, which is needed for solving the
ALE form of the governing equations, can be computed by storing the node locations at prior time instances
and using a finite differencing approximation that is consistent with the chosen dual time-stepping scheme.
For second-order accuracy in time, the mesh velocities are given by

�ux ≈
3�x n+1 − 4�x n + �x

n−1

2∆t
, (64)

where ∆t is the physical time step.
Mesh motion can also be accomplished by first moving the surface boundaries in some specified manner

and then deforming the volume mesh to conform to the new surface position with each time step. The
volumetric deformation procedure is based on a classical spring method, where the key element is the
definition of a stiffness matrix kij , that connects the two ends of a single bar (mesh edge). Equilibrium of
forces is then imposed at each mesh node




�

j∈N (i)

kij�eij�e
T
ij



 �ui =
�

j∈N (i)

kij�eij�e
T
ij
�uj , (65)

27 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

where the displacement �ui is unknown and is computed as a function of the known surface displacements
�uj . N (i) is the set of neighboring points to node i and �eij the unit vector in the direction connecting both
points. The system of equations is solved iteratively using the same linear solvers described above. This
technique for mesh deformation is also during optimal shape design (described below) in order to modify the
volume mesh between major design iterations after an optimizer provides new values for the design variables
that control the geometry (surface shape).

2. Mesh adaptation

An adaptive mesh refinement procedure is included in SU2. Using this method, an existing mesh can be
dynamically modified by the code to improve the accuracy of the solution. This is done to improve the
accuracy of a solution without an excessive increase in computational effort. The implemented procedure6

uses anisotropic adaptation of the grid based on an edge binary system that identifies the right division for
each element. This methodology is important to maintain the coherence in the division of the common faces
between control volumes. Some of the main important characteristics of this adaptation strategy are:

• Robust adaptation. The method should allow multiple adaptation cycles, using classical two-dimensional
and three-dimensional finite volume elements (tetrahedra, hexahedra, pyramids and wedges).

• Fully automated and easy to use.

• No “hanging” nodes, the final grid should be conforming.

A method based on a flexible element division has been implemented in addition to the tetrahedral and
hexahedral division methods which might not give optimum results in some cases. The tetrahedral division
procedure is based on the detection of edge division patterns that are prescribed in the code, however, the
anisotropic division of tetrahedra can significantly deteriorate the quality of the mesh. This is a serious
problem when directional flow-field features are present.

The main challenge of hexahedral division methodologies is the so-called refinement propagation problem
(the buffer zone between an adapted element and the non-adapted grid is greater than one cell). This occurs
when more than one set of edges in the same hexahedron are marked non-uniformly and “hanging” nodes
are not allowed.

Figure 7. Allowed hexahedral divisions, the last division requires
a new vertex in the middle of the hexahedron.

Figure 8. Allowed pyramids divisions, a to-
tal number of 16 combinations are possible.

To prevent the refinement propagation, SU2 uses a flexible element division technique.6 Once an edge-
based structure is in place, the allowed hexahedral division is identified. Fig. 7 shows the seven divi-
sions/combinations implemented in the code. The last division is a special division with a vertex inserted in
the middle of a marked hexahedron. The special hexahedral division into pyramids is required to connect
the adapted with the non-adapted grid, furthermore, each pyramid will be divided into tetrahedrons (see
Fig. 8).

28 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

E. Adjoint formulation and sensitivity computation

In gradient-based optimization techniques (including grid adaptation), the goal is to minimize a suitable cost
or objective function (drag, lift, etc.) with respect to a set of design variables. Minimization is achieved by
means of an iterative process that requires the computation of the gradients or sensitivity derivatives of the
cost function with respect to the design variables.

Gradients of an objective function can be computed in a variety of ways, some of the most popular being
the adjoint methods,2,12,32,38,63,72 due, among other factors, to their ability of computing these derivatives
at a cost comparable to solving the state PDEs (Partial Differential Equations). Adjoint methods are
conventionally divided into continuous and discrete.37,60,64 In the continuous approach,4,8, 38,43,44,49 the
adjoint equations are derived from the governing PDE and then subsequently discretized, whereas in the
discrete approach64,86 the adjoint equations are directly derived from the discretized governing equations.
In SU2 both methodologies have been implemented.

1. Continuous adjoint methodology

One of the key features of SU2 is its capability to perform optimal shape design based on the continuous
adjoint methodology. In this section, the main steps of the continuous adjoint methodology applied to the
Navier-Stokes equations will be shown.

Optimal shape design in systems governed by partial differential equations is formulated on a fluid domain
Ω, delimited by disconnected boundaries divided into an inlet/outlet and one or more solid wall boundaries
S. From now on we will restrict ourselves to the analysis of optimization problems involving functionals J

defined on the solid wall S, whose value depends on the flow variables U obtained from the solution of the
fluid flow equations. In this context, the generic optimization problem can be succinctly stated as follows:
find S

min ∈ Sad such that
J(Smin) = min

Smin∈Sad

J(S), (66)

where Sad is the set of admissible boundary geometries and

J(S) =

�

S

j(�f, T,�n) ds, (67)

is the objective function, where j(�f, T,�n), is a smooth function which depends on �n (inward-pointing unit
vector normal to S), the temperature T on the surface and the vector �f = (f1, f2, f3) = P�n − σ̄ · �n, where
P is the pressure of the fluid, and σ̄ the second order tensor of viscous stresses.

As usual in the adjoint approach the flow equations are incorporated to the cost function as constraints
by means of a Lagrange multiplier for each equation, ΨT = (ψ1,ψ2,ψ3,ψ4,ψ5). In this way, the Lagrangian
reads

J (S) =

�

S

j(�f, T,�n) ds+

�

Ω

�
ΨT

R(U)
�
dΩ.

where R = R(U) are the Navier-Stokes equations. Let us consider an arbitrary (but small) perturbation of
the boundary S which, without loss of generality, can be parameterized by an infinitesimal deformation of
size δS along the normal direction to the surface S. The new surface obtained after the deformation is then
given by S

� = {�x+ δS �n, �x ∈ S} where, for small deformations, the following holds82

δ�n = −∇S(δS), δ(ds) = −2HmδS ds, (68)

where Hm is the mean curvature of S computed as (κ1 +κ2)/2, and κ1, κ2 are curvatures in two orthogonal
directions on the surface. Here ∇S represents the tangential gradient operator on S. Note that ∇S(δS) is a
tangent vector to S in R3 with null component normal to S.

Assuming a regular flow solution U and a smooth boundary S, the variation of the functional J due to
the deformation can be evaluated as

δJ =

�

S

δj(�f, T,�n) ds+

�

δS

j(�f, T,�n) ds+

�

Ω

�
ΨT

δR(U)
�
dΩ, (69)

29 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

where δR represents the variations of R. Using the convention of summation of repeated indexes, i = 1, 2, 3,
the two first terms in the previous equation read

�

S

δj(�f, T,�n) ds =

�

S

�
∂j

∂fi
δfi +

∂j

∂T
δT −

∂j

∂�n
·∇S(δS)

�
ds

=

�

S

�
∂j

∂ �f

· (δP�n− δσ̄ · �n) +
∂j

∂T
δT −

�
∂j

∂�n
+

∂j

∂ �f

P −
∂j

∂ �f

· σ̄

�
·∇S(δS)

�
ds, (70)

�

δS

j(�f, T,�n) ds =

�

S

�
∂j

∂fi
∂nfi +

∂j

∂T
∂nT − 2Hmj

�
δS ds (71)

Note that in Eq. 70 we have written the variation δ �f in terms of δP and δσ̄ and used Eq. 68 for δ�n. The
variations δP�n− δσ̄ · �n and δT appearing in Eq. 70 can be computed from the following linearized system






δR(U) =
∂R

∂U
δU = 0 in Ω,

δ�v = −∂n�v δS on S,

∂n (δT) = (∇T) ·∇S(δS)− ∂
2
n
T δS on S,

(72)

The domain integrals in Eq. 69 are eliminated by using integration by parts and introducing the associated
adjoint operators. Integrating by parts also creates additional boundary terms, which are combined with
the boundary terms in Eq. 69 depending on δP�n− δσ · �n and δT , yielding the boundary conditions for the
adjoint operators. Following this procedure, the continuous adjoint system becomes

�
∂R

∂U

�T

Ψ = 0 in Ω. (73)

Analogously, all boundary terms without explicit dependence on δS can be eliminated by considering the
following choice of boundary conditions for the adjoint variables

�
ϕi =

∂j

∂fi
on S,

∂nψ5 = 1
µ
∗
totCp

�
∂j

∂T

�
on S.

(74)

where µtot and µ
∗
tot

have been defined in Eq. 3. Finally it is possible to write the variation of the functional
δJ as

δJ = −

�

S

hδS ds =

�

S

(�n · Σ̄ϕ
· ∂n�v − µ

∗
tot

Cp∇Sψ5 ·∇ST) δS ds, (75)

where h is the shape sensitivity which does not depend on the variation of the flow variables and Σ̄ϕ is
computed as

Σ̄ϕ = µtot

�
∇�ϕ+∇�ϕ

T
− Id

2

3
∇ · �ϕ

�
. (76)

2. Discrete adjoint methodology

A discrete adjoint methodology, based on Automatic Differentiation,17,25 has been also implemented in SU2.
In this case, the sensitivity of the numerical residual R to a parameter α can be written as:

dR

dα
=

∂R

∂U

dU

dα
+

∂R

∂α
= 0, (77)

rearranging this last equation gives:
dU

dα
= −

�
∂R

∂U

�−1
∂R

∂α
. (78)

In a similar way the sensitivity of the objective function J to the parameter α can be written as

dJ

dα
=

∂J

∂U

dU

dα
+

∂J

∂α
, (79)

30 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

where using the result from Eq. 78 gives

dJ

dα
= −

∂J

∂U

�
∂R

∂U

�−1
∂R

∂α
+

∂J

∂α
. (80)

Finally, the adjoint equation is defined as:

�
∂R

∂U

�T

Ψ = −

�
∂J

∂U

�T

, (81)

and the variation of the objective function can be written as

dJ

dα
= ΨT

∂R

∂α
+

∂J

∂α
. (82)

From the implementation point of view, the discrete adjoint solver in SU2 uses the same class structure
as the existing continuous adjoint and builds the required Jacobian matrix by mirroring the solution method
of the direct problem.

The flow the residual is calculated by first looping over each edge to find the contribution from upwinding
and then looping over the boundary nodes to add the appropriate boundary condition contributions. Hence,
in the discrete adjoint, the contributions to the Jacobian matrix from the fluxes across edges are first
calculated, followed by the contributions from the boundary nodes.

The derivatives of the fluxes, used in both the loop over edges and the boundary condition, are found by
applying Automatic Differentiation. A differentiated version of the upwind routine was created using Python
and Tapenade,26 first extracting and converting the C++ code to C using Python, then transforming this
code using Tapenade, and finally converting back to C++ and inserting the differentiated routine into SU

2,
again using Python.

Once the Jacobian, which is assembled in a transposed state, and objective function sources are con-
structed the linear system can be solved via an iterative procedure.

F. Goal-oriented grid adaptation

The error estimate of integral outputs of partial differential equations can be used as goal-oriented grid
adaptation indicators.24,69 These techniques produce good (and even optimal) numerical grids for the
accurate estimation of an output functional. To illustrate the main idea behind this technique, suppose that
a nonlinear function J(U) (e.g. heat flux, temperature, or pressure distributions on a body surface) is to be
evaluated, where U is the exact solution of a set of nonlinear equations R(U) = 0.

Given an approximate solution, Ū , we define u as the error of the solution, u = Ū −U , and linearize both
the nonlinear equation and the functional:

R(Ū) = R(U + u) ≈
∂R

∂U
u, (83)

and

J(Ū) = J(U + u) ≈ J(U) +
∂J

∂U
u. (84)

This can be re-written as Au ≈ f , where A = ∂R/∂U , f = R(Ū), and J(U) ≈ J(Ū)−g
T
u where gT = ∂J/∂U .

If u satisfies the primal equation and v satisfies the dual or adjoint equation then A
T
v = g. Hence,

J(U) ≈ J(Ū)− v
T
f ≈ J(Ū)− v

T
R(Ū), (85)

where J(Ū)−v
T
R(Ū) is a more accurate estimate for J(U) than J(Ū). This computable correction v

T
R(Ū)

is the sensor for our goal-oriented adaptation.

G. Design variable definition

Using the continuous adjoint methodology, SU2 can compute the variation of an objective function with
respect to infinitesimal surface shape deformations in the direction of the local surface normal at points on

31 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

the design surface. While it is possible to use each surface node in the computational mesh as a design
variable capable of deformation, this approach is not often pursued in practice.

A more practical choice is to compute the surface sensitivities at each mesh node on the design surface and
then to project this information into a design space made up of a smaller set (possibly a complete basis) of
design variables. This procedure for computing the surface sensitivities is used repeatedly in a gradient-based
optimization framework in order to march the design surface shape toward an optimum through gradient
projection and mesh deformation.

In SU2 two methodologies for design variable definition are used. In two-dimensional airfoil calculations,
Hicks-Henne bump functions are employed27 which can be added to the original airfoil geometry to modify
the shape. The Hicks-Henne function with maximum at point xn is given by

fn(x) = sin3(πxen), en =
log(0.5)

log(xn)
, x ∈ [0, 1], (86)

so that the total deformation of the surface can be computed as ∆y =
�

N

n=1 δnfn(x), with N being the
number of bump functions and δn the design variable step. These functions are applied separately to the
upper and lower surfaces. After applying the bump functions to recover a new surface shape with each design
iteration, a spring analogy method is used to deform the volume mesh around the airfoil.

In three dimensions, a Free-Form Deformation (FFD) strategy78,80 has been adopted. Here an initial
box encapsulating the object (rotor blade, wing, fuselage, etc.) to be redesigned is parameterized as a Bézier
solid. A set of control points are defined on the surface of the box, the number of which depends on the
order of the chosen Bernstein polynomials. The solid box is parameterized by the following expression

X(u, v, w) =
l�

i=0

m�

j=0

n�

k=0

Pi,j,kB
l

i
(u)Bm

j
(v)Bn

k
(w), (87)

where l, m, n are the degrees of the FFD function, u, v, w ∈ [0, 1] are the parametric coordinates, Pi,j,k are
the coordinates of the control point (i, j, k), and B

l

i
(u), Bm

j
(v) and B

n

k
(w) are the Bernstein polynomials.

The Cartesian coordinates of the points on the surface of the object are then transformed into parametric
coordinates within the Bézier box. Control points of the box become design variables, as they control the
shape of the solid, and thus the shape of the surface grid inside. The box enclosing the geometry is then
deformed by modifying its control points, with all the points inside the box inheriting a smooth deformation.
With FFD, arbitrary changes to the thickness, sweep, twist, etc. are possible for the design of any aerospace
system. Once the deformation has been applied, the new Cartesian coordinates of the object of interest can
be recovered by simply evaluating the mapping inherent in Eq. 87.

To increase the flexibility of the definition of three-dimensional design variables, a nested Free-Form
Deformation (FFD) capability has been implemented. The key idea of this methodology is the use of a set
of nested FFD boxes to explore the design space, with each FFD box corresponding to a different objective
(see Fig. 9).

• The volume box (which embeds the entire aircraft surface) is useful for rotating the entire geometry,
adjusting the area of the different sections or the total length of the aircraft.

• The main box (which embeds the main wing, fuselage, tail, etc.) is useful for redefining the camber
and thickness of the wing, or applying some deformations like twist, sweep, etc.

• The secondary box (in small localized areas) is useful for removing shock waves in those areas (e.g.,
shocks induced by the nacelles).

H. Optimization framework

The adjoint formulation allows the computation of sensitivities of a wide range of objective functions com-
monly used for optimization problems: quadratic deviation from a target pressure (inverse design), drag
minimization, lift maximization, pitching moment, aerodynamic efficiency, and linear combinations of those.
Also, several constraints have been implemented: fixed non-dimensional flow parameters (minimum lift,
maximum drag, etc.) and geometrical estimations (maximum and minimum thickness, curvature, volume,
area, etc.).

With respect to the optimization strategy, two main options are available in SU2: Gradient Based Opti-
mization (GBO) and Surrogate Based Optimization (SBO). In this section both methods will be described.

32 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 9. Nested Free-Form Deformation example (volume, main, and secondary boxes are shown).

1. Gradient based optimization

The gradient based optimization uses the SciPy library,46 a well-established open-source software for math-
ematics, science and engineering. The SciPy library provides many user-friendly and efficient numerical
routines for the solution of non-linear constrained optimization problems, such as conjugate gradient, Quasi-
Newton or sequential least-squares programming algorithms. At each design iteration, the SciPy routines
require as inputs the values and gradients of the objective functions as well as the chosen constraints, but
not necessarily in a sequential order. Thus the shape optimization wrapper must also keep track of what
simulations have been run to avoid unnecessarily repeating an analysis.

2. Surrogate based optimization

Surrogate-based optimization results in SU2 were obtained using an in-house code based on Gaussian Pro-
cess Regression (GPR) for response surface modeling.55,56 Briefly, GPR is performed by conditioning a
multivariate normal distribution,

f ∼ N (µ, [σ]) , (88)

where f is a normally distributed function with mean vector µ and standard deviation matrix [σ].
In SU2, we take a uniformly zero mean vector and populate the standard deviation matrix with a

covariance model, k, that is a function of training and estimated data:

�
fp

f
∗
k

�
∼ N

�
0,

�
k(xp, xq) k(xp, x

∗
j
)

k(x∗
k
, xq) k(x∗

k
, x

∗
j
)

��
,

{ fi(xi) | i = 1, ..., n } , { f∗
t
(x∗

t
) | t = 1, ...,m }.

(89)

The notation (·)∗ is used to distinguish the estimated data from the training data. Additionally, index
notation is used to describe the sub-blocks of the covariance matrix, where k(xp, xq) would be equivalent
to the matrix kpq. There are n training point vectors, x, with function values, f(x), and m estimated data
point vectors, x∗, with function values, f∗(x∗).

Of the data, we do not know the estimated function values f∗. We do know the training data locations
x and function values f(x), as well as the desired estimated data locations, x

∗. Following Rasmussen’s
derivation,74 we condition the normal distribution with the available data

f |x
∗
, x, f ∼ N (f∗

,V[f∗]) , (90)

33 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

which allows us to identify useful relations for estimating a function fit,

f
∗
k
= k(x∗

k
, xq) k(xp, xq)−1

fp,

V[f∗
k
] =

�
k(x∗

k
, x

∗
j
) − k(x∗

k
, xq) k(xp, xq)−1

k(xp, x
∗
j
)
�
k
,

(91)

where V[f∗] is the covariance of the estimated value f
∗.

3. Covariance Function

The covariance function models the spatial correlation between data points. It is chosen based on the types
of functions that are going to be modeled. Highly-smooth or weakly-smooth functions would be examples of
different types of functions that would require different choices of covariance functions. A common covariance
function is the Gaussian function of the Euclidean distance between points:

k(xp, xq) = k(p, q) = θ
2
1 exp

�
−

1

2θ22

d�

z=1

(pz − qz)
2

�
,

{pi, qi,
∂

∂xi
| i = 1, ..., d},

(92)

where d is the number of dimensions, and p and q are the position vectors chosen from the design space, x.
There are two degrees of freedom in the covariance function known as hyper-parameters. In terms of their
effect on the function fit, the nominal variance θ1 is a measure of the amount of variance allowable between
points, and the length scale θ2 is a measure of the range of influence of a point.

We can adjust the definition of the kernel matrix to include the sensitivity information from an adjoint
solution. In high-dimensional design spaces this could be a large amount of data. To implement this, we
model the correlation between points and derivatives by taking the derivatives of the original covariance
function.

Finally, adaptive refinement sampling criteria can be used to choose new locations in the design space to
sample training data for improving the accuracy of the fit. These criteria take advantage of the probabilistic
construction of GPR by constructing estimates of expected improvement, for example.

34 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

V. Capabilities

In this section, we present a number of the capabilities of SU2 with a focus on high-fidelity analysis,
optimization studies and grid adaptation.

A. High-fidelity analysis

Verification and Validation (V&V) is a critical requirement when building reliable CFD tools and, among
other things, should address the consistency of the numerical methods, the accuracy for different important
application cases, and sensitivity studies with respect to numerical and physical parameters. Here we apply
SU2 to several test cases and make appropriate comparisons to experiments in order to validate SU2 suite
of tools.

1. Compressible RANS simulations

The steady state Reynolds-averaged Navier Stokes (RANS) solver is a key component of the SU2 suite. A
wide range of general fluid dynamics analysis problems have been solved and compared to experimental
results spanning subsonic, transonic, supersonic and hypersonic flight regimes, including:

Figure 10. Pressure contours on the upper surface of
the ONERA M6 wing (RANS-SA).

Figure 11. Eddy viscosity contours on the ONERA
M6 wing (RANS-SA).

• ONERAM6 - A swept, semi-span wing with no twist that uses a symmetric airfoil (ONERA D sections).
The aspect ratio is Λ = 3.8 and the leading edge angle is φ = 30.0◦. The simulation shown in Fig. 10
and Fig. 11 uses the flow field conditions of Test 2308: M∞ = 0.8395, angle of attack 3.06◦, angle of
sideslip 0.0◦. These correspond to a Reynolds number of 11.72 million based on the mean aerodynamic
chord, c = 0.64607m. The ONERA M6 was tested in a wind tunnel at transonic Mach numbers (0.7,
0.84, 0.88, 0.92) and various angles of attack up to 6◦. The wind tunnel tests are documented by
Schmitt and Charpin.79 In Fig. 12 the comparison with experimental data is shown.

• RAE 2822 - A supercritical airfoil commonly used for the validation of turbulence models. For this test
case the flow is fully two dimensional, turbulent and transonic. Additionally, conditions are such that
no separation occurs downstream of the shock position. The test case is based on the AGARD Report
by Cook et al.15 . The Reynolds number is 6.5 million based on a unit chord length, M∞ = 0.729,
and the airfoil is inclined at an angle of attack of 2.31◦. Figs. 13 and 14 show the pressure contours
compared with experimental data.15

• Zero-pressure flat plate - For the verification and validation of turbulence models a standard test
case is the turbulent flow over a flat plate. The flow is everywhere turbulent and a boundary layer

35 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

X/L

C
p

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

X/L

C
p

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

X/L

C
p

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c)

X/L

C
p

-0.2 0 0.2 0.4 0.6 0.8 1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d)

Figure 12. Comparison of Cp profiles of the experimental results of Schmitt and Carpin (red squares) against
SU2 computational results (blue line) at different sections along the span of the wing. (a) y/b = 0.2, (b) y/b
= 0.65, (c) y/b = 0.8, (d) y/b = 0.95.

36 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 13. Pressure contours (Pa) on the RAE 2822
airfoil (RANS-SA).

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Experiment
SU2 (SA model)

Figure 14. Pressure coefficient comparison with ex-
perimental data on the RAE 2822 airfoil (RANS-SA).

develops over the surface. The lack of separation bubbles or other more complex flow phenomena allows
turbulence models to predict the flow with a high level of accuracy. The length of the flat plate used
here is 2m, and it is represented by an adiabatic no-slip wall boundary condition. The S-A turbulence
variable is plotted in Fig. 15. The Reynolds number based on a length of 1m is 5 million, and the
M∞ = 0.2. For validation purposes the u

+ vs. y+ profiles are compared against theoretical profiles of
the viscous sublayer and log law region in Fig. 16.

Figure 15. Turbulence variable on a subsonic flat
plate (RANS-SA).

Figure 16. Velocity profile comparison against the
law of the wall on a subsonic flat plate(RANS-SA).

2. Rotating frame simulations

A rotating frame formulation of the RANS equations is included in SU2 for efficient, steady analysis of
fluid around rotating aerodynamic bodies. Potential applications include wind turbines, turbomachinery,

37 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

propellers, open-rotors, or helicopter rotors. The Caradonna and Tung11 rotor blade was modeled in inviscid
flow to validate the rotating frame formulation as compared to experiment. The rotor geometry consists of
two untwisted, untapered blades with an aspect ratio of 6 and a constant NACA 0012 airfoil section along
the entire span. For comparison purposes, a lifting case was chosen with a collective pitch angle of 8◦ and
a pre-cone angle of 0.5◦. The flow conditions are that of hover at 1250 RPM which results in a tip Mach
number of 0.439. Fig. 17 contains the Cp contours on the upper blade surface along with Cp distributions
at several radial stations compared to experiment.

X

Y

Z

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.5

-1

-0.5

0

0.5

1

1.5-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.5

-1

-0.5

0

0.5

1

1.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.5

-1

-0.5

0

0.5

1

1.5 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.5

-1

-0.5

0

0.5

1

1.5

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 17. Contours over a full revolution, upper surface Cp.

3. Supersonic simulations

SU2 is able to compute the near-field pressure signature as well as the equivalent area,1,67 features that are
important for the simulation of supersonic aircraft. This has been applied to the Lockheed N+2 aircraft
baseline geometry shown in Fig. 18, at M∞ = 1.7 and an angle of attack of 2.1◦.

A grid refinement study has been performed to reduce the computational expense. More specifically, we
coarsened the resulting mesh from 3.1 million nodes to 1.2 million nodes. Fig. 19 shows the similarities in

38 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 18. Baseline LMCO N+2 supersonic passen-
ger jet geometry.

Figure 19. Comparison of near-field pressure signa-
tures for coarse and fine mesh.

the near-field pressure signature between the two meshes, while a comparison of the pressure field on the
symmetry plane in Fig. 20 and Fig. 21 also shows similar behavior.

Figure 20. Pressure contours for fine mesh. Figure 21. Pressure contours for coarse mesh.

4. Low-Mach number simulations

A NACA0012 airfoil at 2◦ angle of attack at M∞ = 0.01 was used to compare results of the standard Roe
scheme and the Roe-Turkel scheme at low Mach numbers. The simulation is inviscid, second-order accurate
in space, and uses implicit time integration with three levels of multi-grid for convergence acceleration. The
solution with Roe-Turkel converged by six orders of magnitude while the solution using Roe’s scheme did not
converge. Fig. 22 shows the distribution of non-dimensional pressure over the airfoil from the two methods.
The coefficient of lift over the NACA 0012 airfoil at M∞ = 0.01 and 2◦ angle of attack is 0.235.

39 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 22. Non-dimensional pressure over NACA
0012 at M∞ = 0.01 using the Roe-Turkel scheme.

Figure 23. Non-dimensional pressure over NACA
0012 at M∞ = 0.01 using Roe’s scheme (non-
converged solution).

5. Time-accurate simulations with dynamic meshes

Several cases have been used for testing the implementation of the unsteady governing flow equations in
Arbitrary Lagrangian-Eulerian (ALE) form.

• Pitching NACA 64A010 airfoil - a comparison was made against the well-known CT6 data set of Davis18

for validation purposes. The physical experiment measured the unsteady performance of the NACA
64A010 airfoil pitching about the quarter-chord point. The particular experimental case of interest
studied pitching motion with a reduced frequency, wr, of 0.202 (ωr = ω·c

2v∞
, where c is the chord and ω

is the angular frequency of the pitching), M∞ = 0.796, a mean angle of attack of 0◦, and a maximum
pitch angle of 1.01◦.

The numerical simulations were performed with 25 time steps per period for a total of 10 periods.
Fig. 24, and Fig. 25 show a comparison of the lift coefficient versus angle of attack between SU2 and
experiment during the final period of oscillation for the Euler and RANS equations, respectively. In
physical time, the curve is traversed in a counterclockwise fashion. Note that non-linear behavior
corresponding to moving shock waves results in a hysteresis effect.

• UH-60A rotor blade - A single blade was modeled in inviscid flow to demonstrate the capability of
this technique.14 To minimize wake interactions between the blades, a high-speed forward flight case
(C8534) was chosen. The blade surface mesh is shown in Fig. 26.

The CFD high-fidelity results are coupled with a comprehensive structural dynamics (CSD) tool, the
University of Maryland Advanced Rotorcraft Code (UMARC). UMARC solves the coupled structural
dynamic and control problem to yield a trimmed vehicle (including rotor and body). Its structural
simulation depends upon an external aerodynamic analysis to provide the performance of each airfoil
section along the radius of the blade at each azimuth.

Mesh deformations (displacements and rotations of the airfoil sections along the blade) from UMARC
were mapped to the three-dimensional surface mesh at each time (azimuth) step. Three full revolutions
were taken to overcome any initialization effects and achieve a periodic steady state. The aerodynamic
properties of interest (in this case CQ and CT) are typically averaged over all time instances of a
periodically-steady revolution. The time histories of CQ and CT are shown in Fig. 27. As expected
for this flight case, periodic flow emerged rapidly with the second and third revolutions of the flow

40 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 24. Coefficient of lift hysteresis comparison
against experimental data (Euler simulation).

Figure 25. Coefficient of lift hysteresis comparison
against experimental data (RANS simulation).

Figure 26. UH-60A rotor blade surface mesh. Figure 27. Time histories of CQ and CT for three
revolutions of a flow solution.

41 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

solution nearly exactly equal. Contours of the flow solutions for a full revolution are shown in Fig. 28
and Fig. 29.

Figure 28. Pressue contours over a full revolution,
upper surface Cp.

Figure 29. Pressure contours over a full revolution,
lower surface Cp.

6. Free-surface simulations

A 2-D, super-critical and sub-critical steady-state flow over a submerged bump without breaking waves is
presented as a baseline test of the free-surface solver verification and validation. The selected 2-D bump68

has the following shape: z = (2.7/4)x(x − 1)2, 0 ≤ x ≤ 1, and is placed on the bottom of a channel.
For the cases studied here, a final steady-state solution is achieved. Two free-surface cases with different
Froude numbers (based on the bump length, L = 1.0) and undisturbed depths of water, H, were selected: a
super-critical case, FrL = 1.0 and H = 0.228, and a sub-critical case, FrL = 0.304 and H = 0.500.

Non-dimensional x coordinate

F
re

e
-s

u
rf

a
c

e
 l
o

c
a

ti
o

n

-1 -0.5 0 0.5 1 1.5 2

0

0.05

0.1

0.15

Experiment (Fr = 1.0, H = 0.228)
Simulation (inviscid)

Figure 30. Comparison between experiments and in-
viscid simulation (super-critical case,).

Non-dimensional x coordinate

F
re

e
-s

u
rf

a
c

e
 l
o

c
a

ti
o

n

0 0.5 1 1.5 2
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Experiment (Fr = 0.304, H = 0.5)
Simulation (inviscid)

Figure 31. Comparison between experiments and in-
viscid simulation (sub-critical case).

Both the super-critical and sub-critical simulations admit steady-state solutions and have been inves-

42 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

X coordinate

F
re

e
-s

u
rf

a
c

e
 l
o

c
a

ti
o

n

-10 -5 0 5 10
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

X coordinate

F
re

e
-s

u
rf

a
c

e
 l
o

c
a

ti
o

n

-10 -5 0 5 10
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

X coordinate

F
re

e
-s

u
rf

a
c

e
 l
o

c
a

ti
o

n

-10 -5 0 5 10
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

X coordinate

F
re

e
-s

u
rf

a
c

e
 l
o

c
a

ti
o

n

-10 -5 0 5 10
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Figure 32. Sub-critical case, Cahouet experiment. Iterations: (top left) 10, (top right) 20, (bottom left) 30
and (bottom right) 590 (steady state).

43 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Quantity Argon Ions Electrons

Temperature (K) 810 810 3900

Density (kg/m3) 1.664 ×10−4 1.664 ×10−6 2.29 ×10−11

Velocity (m/s) (2347, 0, 0) (2347, 0, 0) (2347, 0, 0)

Mach number 4.6 4.6 0.0077

Table 4. Flow initial conditions

tigated by Cahouet.9 In Fig. 30, a comparison between the simulation and super-critial experiment is
presented. In Fig. 31, the sub-critical case is compared with the experiments. In both cases the wave profile
shows good agreement with measurements, and we note that the under-predicted second wave crest has been
reported by other numerical experiments. In Fig. 32 the time evolution of the simulation is presented.

7. Plasma simulation

SU2 can model ionized gases, and to validate this part of the solver, we simulated the flow of partially ionized
Argon gas over a solid body and computed the heat transfer to a three-dimensional surface from the plasma
stream. The results for the computed heat flux at the wall are then compared with experiments performed
by R. J. Nowak et al.,65 in which Argon gas was passed over a d.c. arc heater which ionized it to 1%. This
stream of ionized Argon was expanded to Mach 4.6 through a nozzle at the end of which measurements of
flow parameters such as the electron temperature, density and others were made.

A hybrid, unstructured, pre-adapted, three-dimensional mesh was used for this simulation (see Fig. 34),
and the flow for the three species was started with values corresponding to the inlet conditions given in
Table 4.

Figure 33. Distribution of Mach number of: (left) argon neutral atoms, (right) electrons. Note that the
neutral atoms were supersonic, while the electrons were subsonic. This difference is due to the speed of sound
in electrons, which is large owing to their small mass.

Catalytic boundary conditions were used on the wall of the shell, and heat released during recombination
was transferred to the wall through an isothermal boundary condition for ions and neutrals and an adiabatic
boundary condition for electrons. Heat flux from the Argon gas and ions to the shell was added to obtain
the total heat flux to the shell (electrons did not transfer heat to the wall owing to the specific wall boundary
condition).

Fig. 35 shows the numerically computed heat flux along the nose which matches very well with experiment.
Fig. 33 shows the distribution of the Mach number for two species, neutral argons atoms and electrons. The
velocity and temperature of the species were similar owing to inter-species collisions, but their Mach numbers
vary significantly due to different physical properties. The very small mass of electrons compared to the

44 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 34. A tetrahedral-hexahedral hybrid mesh of
46,000 cells for simulation of a plasma stream over
a sphere-cylinder body. This mesh is pre-adapted to
capture the shock wave and the boundary layer.

Figure 35. Comparison of numerical heat flux to
the three dimensional shell from a supersonic stream
of plasma in Argon with results from NASA experi-
ments.

other chemical species results in a much larger speed of sound in electrons making their Mach numbers
extremely small.

B. Optimal shape design and optimization

The design optimization of PDE-constrained systems is a primary function of the SU2 suite. The built-in
adjoint solver in the CFD module, in conjunction with the Gradient Projection Code and Mesh Deformation
Code, delivers objective function gradient information to optimization algorithms which enables surface
shape optimization for complex geometries.

1. Supersonic aircraft design

The objective of this particular problem is to demonstrate the ability of the adjoint formulation to en-
able design optimization while maintaining a target equivalent area distribution across multiple azimuths.55

More specifically, a gradient-based, multi-objective optimization of the Lockheed N+2 design was performed
(M∞ = 1.7, angle of attack 2.1◦). This was done for 9 iterations with azimuths varying from 0◦ to 60◦ (pres-
sure disturbances above 60◦ do not reach the ground) and the drag was reduced from 0.00875 to 0.00850, a
3% reduction.

The ability to compute sensitivities is a fundamental capability and very useful output of SU2. Fig. 38
and Fig. 39 show the sensitivities of CD and CL with respect to variations of the geometry in the local normal
direction. The magnitude of the surface sensitivity is related to changes in the cost function caused by changes
in geometry, and designers can use this sensitivity information to determine appropriate parameterizations
of the configuration prior to optimization.

Fig. 36 and 37 show a comparison of the near-field pressure distributions, and Fig. 40 and Fig. 41
show a comparison of equivalent areas between the baseline and final design. The plots for equivalent area
distribution show at most a 2% change from the target.

The overlay of the baseline and final geometry in Fig. 42 shows that the upper wing surface was flattened
and the lower fuselage deformed inwards in order to reduce the drag. To compensate for the fuselage’s effect
on the equivalent area, the lower wing surface was deformed downwards as well. A comparison of surface
pressures for the design study are given in Fig. 43, and contours of the density and adjoint density fields are
shown in Fig. 44 and Fig. 45.

An unconstrained, surrogate-based drag optimization was performed on the N+2 configuration using
the 9 Free-Form Deformation control points placed on the upper wing surface (see Fig. 46). A comparison
of the convergence history with a gradient-based optimization of the problem is shown in Fig. 47. The

45 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 36. Baseline near-field pressure signatures. Figure 37. Final near-field pressure signatures.

Figure 38. Drag sensitivity (M∞ = 1.7, AoA 2.1◦),
including propulsion effects.

Figure 39. Lift sensitivity (M∞ = 1.7, AoA 2.1◦), in-
cluding propulsion effects.

46 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 40. Baseline target equivalent area distribu-
tions.

Figure 41. Final target equivalent area distributions.

Figure 42. Baseline and final N+2 geometry compar-
ison.

Figure 43. Baseline and final N+2 surface pressures.

Figure 44. Contour plot of density for the N+2 base-
line configuration.

Figure 45. Contour plots of density adjoint variable
for the N+2 baseline configuration and equivalent
area as objective function.

47 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

surrogate-based optimization procedure was able to discover a 4.6% reduction in drag in 20 fewer iterations
than a gradient-based optimization. The first 21 design points are chosen by latin hypercube sampling and
are independent. They can be simulated simultaneously given enough computing resources, which further
reduces the wall time spent optimizing. The six adaptive refinement iterations after the initial sample show
that the response surface allows rapid convergence to the minimum. The use of an expected improvement
sampling criteria also allows us to claim with reasonable certainty that this is the global minimum within
the box bounds of the problem.

Figure 46. Location of the design variable (control
points of the FFD box).

Figure 47. Comparison of unconstrained drag GBO
and SBO.

A comparison of the geometry change between the baseline and final design in Fig. 48 shows that the
drag reduction was accomplished by reducing the thickness of the wing.

Figure 48. Original and deformed N+2 surfaces, unconstrained drag SBO.

48 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

2. Airfoil and fixed wing optimization

• NACA 0012 - A redesign of the NACA 0012 was undertaken, minimizing the drag while maintaining the
lift and pitching moment of the original configuration. The simulation was performed at M∞ = 0.75
and an angle of attack of 1.25◦. Fig. 49 shows the initial and the final pressure distribution and Fig. 50
details the optimization evolution. After 12 iterations, the drag was reduced 200 counts, while the lift
and pitching moment both remain constant.

X coordinate

-C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

NACA0012
Final design

Figure 49. Pressure distribution over a NACA 0012
(baseline and final design).

CFD solver iterations
C

D

C
L

C
M

z

2 4 6 8 10 12 14

0

0.005

0.01

0.015

0.02

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

C
D

C
L

C
Mz

Figure 50. Transonic NACA 0012 optimization his-
tory (drag, lift, and pitching moment).

• ONERA M6 and DLR F6 - Both the ONERA M6 fixed wing (M∞ = 0.8395, angle of attack 3.06◦)
and DLR F6 aircraft (M∞ = 0.75, angle of attack 0◦) were used as starting points for optimization,
considering inviscid, transonic flow. The design variables were defined using the Free-Form Deformation
(FFD) methodology, with the goal of the design process to minimize the coefficient of drag by changing
the shape without any constraints. The specific design variables used were the z-coordinates of certain
control points.

In Figs. 51 and 52, it can be seen that the shock on the upper surface of the wing was removed,
noting the change in shape of both the wing surface and the FFD box. Figs. 53 and 54 show the same
technique applied to the aircraft configuration, noting that this time to shock is weakened but not
entirely removed.

3. Wing design using RANS equations

A single-point minimization case is used to study the continuous adjoint method for turbulent flows.8 The
selected flow conditions were M∞ = 0.8395, angle of attack = 3.06o, and Reynolds number of 11.72 million
based on the mean aerodynamic chord c = 0.64607m. The profile being designed was an ONERA M6 wing.
Only the upper surface of the wing was redesigned using the control points in Fig. 55.

After 10 iterations, the drag coefficient is finally reduced by a total of 10%. Fig. 56 shows the pressure
coefficient contours of the original ONERA M6 wing compared to the redesigned profile. The shock wave
initially present on the upper surface has been diminished.

4. Redesign of a rotor in hover

The Caradonna and Tung rotor geometry was used as an example of rotor design.20 A lifting case was chosen
with a collective pitch angle of 8◦, a pre-cone angle of 0.5◦. The flow conditions were that of hover at 2500
RPM results in a tip Mach number of 0.877.

49 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 51. Pressure contours showing transonic
shocks on the initial design (ONERA M6).

Figure 52. Pressure contours around the final wing
design (ONERA M6).

Figure 53. Pressure contours showing transonic
shocks on the initial design (DLR F6).

Figure 54. Pressure contours around the final aircraft
design (DLR F6).

Figure 55. Control points of the Free Form Defor-
mation box around the ONERA M6 wing..

Figure 56. Coefficent of pressure contours on the
initial and optimized ONERA-M6 wing.

50 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 57. Rotor geometry with the FFD box sur-
rounding the blade tip.

Figure 58. Comparison of the baseline and optimized
rotor geometries with Cp contours.

Design variables were defined using a FFD parameterization. Movements in the vertical direction were
allowed for a total of 84 control points on the upper and lower surfaces of the FFD box as shown in Fig. 57.
In order to maintain a smooth surface during deformation, control points near the trailing edge and inboard
side of the box were held fixed. The gradients of torque coefficient, CQ, with respect to a subset of the FFD
control point variables on the upper surface given by both the continuous adjoint and finite differencing were
compared with results shown in Fig. 59.

Figure 59. Continuous adjoint and finite differencing
gradient comparison for 19 FFD control point vari-
ables.

Figure 60. Gradient verification using the FFD con-
trol point variables and optimization results.

A redesign of the rotor blade shape for minimizing torque with a minimum thrust constraint of CT =
0.0055 was performed using gradient information obtained via the continuous adjoint approach. After 20
design cycles, CQ was reduced by 26.9% from 0.0006098 to 0.0004458 while maintaining a CT value of 0.00553
from a starting value of 0.00575. These optimization results are shown in Fig. 60. The optimized design
features a blade tip with a sharper, downturned leading edge and a thinner, asymmetric section shape. The
initial and final surface shapes with Cp contours are compared in Fig. 58. Note that the strong shock on the
upper surface has been removed.

51 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

C. Adaptive Mesh Refinement

The Mesh Adaptation Code in the SU2 suite facilitates strategic mesh adaptation based on several common
schemes, including gradient and goal-oriented (adjoint-based) methods.

1. Goal-oriented mesh adaptation

To study the applicability of the goal-oriented mesh adaptation, a two-dimensional, Euler, supersonic inlet
test case, in particular the Clemens experimental configuration,94 was selected.

Figure 61. Density contours for nominal conditions (inflow Mach number 5.0 and ramp angle 6.0◦).

Figure 62. Density adjoint variable contours for nominal conditions and pressure sensor located on the lower
wall.

The nominal conditions are an inlet Mach number of 5.0 and a ramp angle 6.0◦ (see Fig. 61). The
computation (see Fig. 62) was performed using a second-order continuous adjoint formulation. In this case,
we were interested in predicting accurately the pressure signature in an area of the lower wall that is located
slightly downstream of the end of the inlet ramp.

Figure 63. Grid adaptation using a gradient-based method (upper), adjoint-based computable error (lower).

In Fig. 63, the goal-oriented adaptation is compared with the gradient-based technique. Due to the
supersonic flow, the goal-oriented technique only adapts the numerical grid upstream of the sensor location.
On the other hand, the gradient-based methodology adapts the numerical grid along the entire shock train.

52 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

2. Engine propulsion effect adaptation

The gradient-based adaptation methodology was also tested with highly complex geometries. For example,
the adaptation techniques were used to study the effects of propulsion integration for the Lockheed N+2
aircraft geometry (M∞ = 1.7, angle of attack 2.1◦). Here the final target was to evaluate the pressure
signature in the near-field, and two levels of solution adaptation were used to capture minor effects due to
the propulsion.

Figure 64. Gradient based mesh refinement for the Lockheed N+2 aircraft geometry (M∞ = 1.7, AoA 2.1◦,
with engine propulsion effects), showing the change in the Mach number contours.

In Fig. 64 and Fig. 65 the baseline and two levels of adaptation are shown. The baseline mesh has 1.3
million nodes, while the adapted grids have 1.5 and 1.8 million nodes, respectively.

Figure 65. Gradient based mesh refinement for the Lockheed N+2 aircraft geometry (M∞ = 1.7, AoA 2.1◦,
with engine propulsion effects), showing the change in the grid.

The effect of the adaptation is also reflected in the near-field pressure signature, plotted at different
azimuthal angles in Fig. 66, which shows minor differences.

53 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

X coordinate (m)

C
p

0 20 40 60 80 100

-0.01

-0.005

0

0.005

0.01

Azimuthal angle 0 deg (baseline).
Azimuthal angle 0 deg (cycle 0).
Azimuthal angle 0 deg (cycle 1).

X coordinate (m)

C
p

0 20 40 60 80 100
-0.01

-0.005

0

0.005

Azimuthal angle 34 deg (baseline).
Azimuthal angle 34 deg (cycle 0).
Azimuthal angle 34 deg (cycle 1).

Figure 66. Adjoint-based mesh refinement for the RAM-C II hypersonic flight test experiment.

3. Plasma adaptation

The Mesh Adaptation Code within SU2 is capable of handling large, multi-physics simulations due to the
general formulation of the adaptation strategies. The results displayed here demonstrate that capability on
a high Mach number flow in thermo-chemical non-equilibrium for a number of different strategies.

Iteration

R
(

N
2)

0 2000 4000 6000 8000 10000 12000

-9

-8

-7

-6

-5

-4
Baseline
Full
Gradient
Adjoint

Figure 67. Log-reduction in density residual for the
most highly adapted meshes.

Nodes

C
D

104 105
0.1865

0.187

0.1875

0.188

0.1885

0.189

0.1895
Full
Gradient
Adjoint

Figure 68. CD convergence for the adaptation
schemes.

This particular application is suitable for mesh adaptation because accurately simulating high-speed gas
flows requires grids of high quality. Post-shock conditions depend strongly on mesh resolution and must
be adequately resolved for accurate force and energy predictions at domain boundaries. Furthermore, the
inclusion of multiple chemical constituents and thermochemical non-equilibrium increases the size of the
linear system and introduces stiff source terms, placing a premium on efficient solution strategies.

The problem considered here is based on the RAM-C II test article for the series of hypersonic flight tests47

conducted at NASA to quantify electron number densities around entry vehicles. This is an axisymmetric
body with a nose radius of 0.1524m, a half-angle of 9◦, and a total length of 1.295m. Freestream conditions

54 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Figure 69. Adapted meshes: (left) gradient-based adapted, (right) adjoint-based adapted.

match those of Case 6 in the original test report and are summarized as follows: M∞ = 25.9, H = 71 km,
T∞ = 216K, and a Reynolds number of 6280.

x

y

-0.04 -0.02 0
0

0.02

0.04

Temperature_TR(0)

19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

x

y

-0.04 -0.02 0
0

0.02

0.04

Temperature_TR(0)

19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Figure 70. Effect on temperature distribution of adaptation behind the shock at the nose of the RAM-C II
geometry: (left) baseline, (right) adjoint-based adapted.

The simulation uses an inviscid, two-species Nitrogen gas chemistry model at the specified freestream
conditions, and the adjoint problem uses the drag coefficient as the objective function (first-order, Roe spatial
discretization). The convergence history of the different grids used are shown in Fig. 67, and a comparison
of the different strategies with the value of the drag coefficient is plotted against mesh size for each method
in Fig. 68. Fig. 69 shows how the gradient- and adjoint-based approaches adapt the grid, and Fig. 70 shows
the effect of adjoint-based adaptation on the temperature solution.

55 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

VI. Conclusions

This paper has presented a detailed overview of the objectives, implementation, and capabilities of the
Stanford University Unstructured (SU2) analysis and optimization suite. The suite can be used to analyze the
behavior of problems governed by arbitrary PDEs that are discretized on arbitrarily-complex unstructured
meshes. Moreover, SU2 can be used to solve PDE-constrained optimization problems defined by the user.
The suite takes advantage of modern programming techniques resulting in code that is portable, reusable,
modular, and freely available through an open-source license.

In addition to describing many of the details of each component of the suite including their formulation
and discretization, this paper presents up-to-date examples of the use of SU2 for a variety of problems such
as steady and unsteady Euler and RANS, multi-species and non-equilibrium flows, low-speed and supersonic
simulations, or free surface formulations, to name a few. The solution of the corresponding adjoint systems
for these problems provides sensitivity information that can be directly used for optimization, provided to
uncertainty quantification techniques, or even used to construct surrogate models, and several examples were
given in this article.

The result is an extensible framework that is available to the user community for further development.
Two important considerations during the initial development of SU2 have been to ensure (a) that the
complete framework is available for research at locations and institutions that do not have the resources to
create environments like this from scratch, and (b) that the resulting code base remains open source (so that
its components can be peer-reviewed and improved upon) and available as long as it serves a useful purpose
for the community.

Over the past year (since the suite was initially released), the software has been downloaded by more
than 3, 000 institutions and individuals worldwide. The development team has engaged in many interactions
with the user community that have led to improvements in the installation procedure, the documentation,
and the validation of multiple test cases. Many suggestions for improvement have been made, and several
groups around the world have expressed interest in developing new modules for the suite. We strongly
encourage such efforts by members of our community and look forward to seeing many future developments
incorporated into the code.

The development of SU2 is supported by the Aerospace Design Laboratory at Stanford University, which
will continue to host all major activities involving the software suite. For more information regarding the
current status of SU2, please visit our web page, su2.stanford.edu.

56 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

Acknowledgments

Francisco Palacios would like to acknowledge the support of the U.S. Department of Energy under the
Predictive Science Academic Alliance Program (PSAAP), and also thank Prof. Jameson (Stanford) and
Prof. Zuazua (BCAM) for helpful discussions and comments. Michael R. Colonno would like to acknowledge
Aeroflightdynamics Directorate (AFDD) at NASA Ames Research Center. Aniket C. Aranake would like
to acknowledge the support the U.S. Department of Defense, National Defense Science and Engineering
Graduate (NDSEG) Fellowship. Sean R. Copeland would like to thank Mr. and Mrs. John Lillie for
their generous contributions to the Stanford Graduate Fellowship program, through which this research was
funded. Thomas D. Economon would like to acknowledge U.S. government support under and awarded
by the U.S. Department of Defense, Air Force Office of Scientific Research, National Defense Science and
Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. Amrita K. Lonkar would like to acknowledge the
support from the Stanford Graduate Fellowship. Trent W. Lukaczyk would like to thank the support of the
NASA Supersonics Project of the NASA Fundamental Aeronautics Program. Thomas W. R. Taylor would
like to thank the support of the U.S. Department of Energy under the Predictive Science Academic Alliance
Program (PSAAP). The SU2 (v2.0) developers would also like to thank the following researchers: Karthik
Duraisamy (Stanford), Jason Hicken (RPI), Carlos Castro (UPM), Alfonso Bueno (University of Oxford),
Michael Buonanno (Lockheed-Martin Corporation), Rubén Pérez (Royal Military College of Canada), Gérald
Carrier (ONERA), Kedar Naik (Stanford), Santiago Padrón (Stanford).

57 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

References

1Juan J. Alonso and Michael Colonno. Multidisciplinary optimization with applications to sonic-boom minimization. In
Annual Review of Fluid Mechanics, volume 44, pages 505–526. 2012.

2W.K. Anderson and V. Venkatakrishnan. Aerodynamic design optimization on unstructured grids with a continuous
adjoint formulation. AIAA Paper, 97-0643, 1997.

3J.D. Anderson Jr. Hypersonic and High-Temperature Gas Dynamics. AIAA Education Series, 2006.
4A. Baeza, C. Castro, F. Palacios, and E. Zuazua. 2-D Euler shape design on nonregular flows using adjoint Rankine-

Hugoniot relations. AIAA Journal, 47(3), 2009.
5T.J. Barth. Aspect of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations. In Lecture

Notes Presented at the VKI Lecture Series, 1994 - 05, Rhode Saint Genese Begium, 2 1995. Von karman Institute for fluid
dynamics.

6R. Biswas and R.C. Strawn. Tetrahedral and hexahedral mesh adaptation for cfd problems. Applied Numerical Mathe-
matics, 26:135–151, 1998.

7A. Borzi. Introduction to multigrid methods. Technical report, Institut für Mathematik und Wissenschaftliches Rechnen
(Karl-Franzens-Universität Graz), 2003.

8A. Bueno-Orovio, C. Castro, F. Palacios, and E. Zuazua. Continuous adjoint approach for the Spalart–Allmaras model
in aerodynamic optimization. AIAA Journal, 50(3), 2012.

9J. Cahouet. Etude numerique et experimentale du probleme bidimensionnel de la resistance de vagues non-lineaire.
Technical report, Technical report 185, Ecole Nationale Superieure de Techniques Avancees, 1984.

10G. V. Candler and R. W. MacCormack. Computation of weakly ionized hypersonic flows in thermochemical nonequi-
librium. Journal of Thermophysics and Heat Transfer, 5(3):266–273, 1991.

11F. X. Caradonna and C. Tung. Experimental and analytical studies of a model helicopter rotor in hover. Technical
Report NASA Technical Memorandum 81232 (NASA Ames Research Center, Moffett Field, CA), 1981.

12C. Castro, C. Lozano, F. Palacios, and E. Zuazua. A systematic continuous adjoint approach to viscous aerodynamic
design on unstructured grids. AIAA Journal, 45(9):2125–2139, 2007.

13A. J. Chorin. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics,
137:118–125, 1997.

14M. R. Colonno, K. Naik, K. Duraisamy, and J. J. Alonso. An adjoint-based multidisciplinary optimization framework
for rotorcraft systems. AIAA Paper 2012-5656, 2012.

15P. Cook, M. McDonald, and M. Firmin. Aerofoil RAE2822 pressure distributions, and boundary layer and wake
measurements. Technical Report AGARD 138, 1979.

16S. R. Copeland, A. K. Lonkar, F. Palacios, and J. J. Alonso. Adjoint-based goal-oriented mesh adaptation for nonequi-
librium hypersonic flows. AIAA Paper, 51st Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace
Exposition (Submitted for Publication), Grapevine, TX, January 2013.

17G. F. Corliss, C. Faure, A. Griewank, and L. Hascoet. Automatic Differentiation of Algorithms: From Simulation to
Optimization. Springer Verlag, New York, 2002.

18S. S. Davis. NACA 64A010 (NASA Ames model) oscillatory pitching, compendium of unsteady aerodynamic measure-
ments. Technical Report AGARD, Rept. R-702, 1982.

19T. D. Economon, F. Palacios, and J. J. Alonso. A coupled-adjoint method for aerodynamic and aeroacoustic optimization.
AIAA Paper 2012-5598, 2012.

20T. D. Economon, F. Palacios, and J. J. Alonso. Optimal shape design for open rotor blades. AIAA Paper 2012-3018,
2012.

21T. D. Economon, F. Palacios, and J. J. Alonso. Unsteady aerodynamic design on unstructured meshes with sliding
interfaces. AIAA Paper, 51st Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(Submitted for Publication), Grapevine, TX, January 2013.

22P. Eliasson. Edge, a Navier-Stokes solver for unstructured grids. Technical Report FOI-R-0298-SE, FOI Scientific
Report, 2002.

23J. E. Ffowcs Williams and D. L. Hawkings. Sound generation by turbulence and surfaces in arbitrary motion. Philo-
sophical Transactions of the Royal Society of London, A 342, pp.264-321, 1969.

24M. B. Giles and N. A. Pierce. Adjoint error correction for integral outputs. Error Estimation and Adaptive Discretization
Methods in Computational Fluid Dynamics, 2002.

25A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation (2nd
ed.). Society for Industrial and Applied Mathematics (SIAM), 2008.

26L. Hascoët and V. Pascual. Tapenade 2.1 user’s guide. Technical Report 0300, INRIA, http://www.inria.fr/rrrt/rt-
0300.html, 2004.

27R.M. Hicks and P.A. Henne. Wing design by numerical optimization. Journal of Aircraft, 15:407–412, 1978.
28C. Hirsch. Numerical Computation of Internal and External Flows. Wiley, New York, 1984.
29D. G. Holmes and S. S. Tong. A three-dimensional Euler solver for turbomachinery blade rows. Journal of Engineering

for Gas Turbines and Power, 107, 1985.
30Kitware Inc. VTK User’s Guide Version 11. Kitware Inc., 2010.
31J. J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian-Eulerian Methods in Encyclo-

pedia of Computational Mechanics. John Wiley and Sons, 2004.
32A. Jameson. Aerodynamic design via control theory. Journal of Scientific Computing, 3:233–260, 1988.
33A Jameson. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings.

AIAA Paper, 91-1596, 1991.

58 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

34A. Jameson. Analysis and design of numerical schemes for gas dynamics 1 artificial diffusion, upwind biasing, limiters
and their effect on accuracy and multigrid convergence. RIACS Technical Report 94.15, International Journal of Computational
Fluid Dynamics, 4:171–218, 1995.

35A. Jameson. Analysis and design of numerical schemes for gas dynamics 2 artificial diffusion and discrete shock structure.
RIACS Report No. 94.16, International Journal of Computational Fluid Dynamics, 5:1–38, 1995.

36A. Jameson. A perspective on computational algorithms for aerodynamic analysis and design. Progress in Aerospace
Sciences, 37:197–243, 2001.

37A. Jameson. Aerodynamic shape optimization using the adjoint method. In Lecture Notes Presented at the VKI Lecture
Series, Rhode Saint Genese Begium, 2 2003. Von karman Institute for fluid dynamics.

38A. Jameson and S. Kim. Reduction of the adjoint gradient formula for aerodynamic shape optimization problems. AIAA
Journal, 41(11):2114–2129, 2003.

39A. Jameson, L. Martinelli, and F. Grasso. A multigrid method for the Navier-Stokes equations. AIAA Paper, 86-0208,
1986.

40A. Jameson and S. Schenectady. An assessment of dual-time stepping, time spectral and artificial compressibility based
numerical algorithms for unsteady flow with applications to flapping wings. AIAA Paper, 20094273, 2009.

41A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the euler equations by finite volume methods using
runge-kutta time stepping schemes. AIAA Paper, 81-1259, 1981.

42A. Jameson and Y. Seokkwan. Lower-Upper implicit schemes with multiple grids for the euler equations. AIAA Journal,
25(7):929–935, 1987.

43A. Jameson, S. Sriram, and L. Martinelli. A continuous adjoint method for unstructured grids. AIAA Paper, 2003-3955,
2003.

44A. Jameson, S. Sriram, L. Martinelli, and B. Haimes. Aerodynamic shape optimization of complete aircraft configurations
using unstructured grids. AIAA Paper, 2004-533, 2004.

45A. Jameson and E. Turkel. Implicit schemes and LU-decompositions. Mathematics of Computation, 37:385–397, 1981.
46E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python, 2001–.
47W. L. Jones and A. E. Cross. Electrostatic probe measurements of plasma parameters for two reentry flight experiments

at 25,000 feet per second. Nasa tn d-6617, Washington, DC, February 1972.
48G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0.

http://www.cs.umn.edu/~metis, 2009.
49S. Kim, J.J. Alonso, and A. Jameson. Design optimization of high-lift configurations using a viscous continuous adjoint

method. AIAA Paper, 2002-0844, 2002.
50L.D. Landau and E.M. Lifshitz. Fluid Mechanics (2nd Edition). Pergamon Press, 1993.
51R. B. Langtry and F. R. Menter. Correlation-based transition modeling for unstructured parallelized computational

fluid dynamics codes. AIAA Journal, 47(12), 2009.
52J. H. Lee. Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles. In H. F. Nelson,

editor, Thermal Design of Aeroassisted Orbital Transfer Vehicles, volume 96, pages 3–53. AIAA, New York, 1985.
53R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Univesity Press, 2002.
54A. K. Lonkar, F. Palacios, R. W. MacCormack, and J. J. Alonso. Multidimensional simulation of plasma in argon

through a shock in hypersonic flow. 43rd AIAA Thermodynamics Conference 25-28 June 2012, New Orleans, Louisiana,
(3105), 2012.

55T. Lukaczyk, F. Palacios, and J. J. Alonso. Response surface methodologies for low-boom supersonic aircraft design
using equivalent area distributions. AIAA Paper 2012-5705, 2012.

56T. Lukaczyk, F. Palacios, and J. J. Alonso. Managing gradient inaccuracies while enhancing optimal shape design meth-
ods. AIAA Paper, 51st Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Submitted
for Publication), Grapevine, TX, January 2013.

57R. W. MacCormack, D. D’Ambrosio, D. Giordano, J. K. Lee, and T. Kim. Plasmadynamic simulations with strong
shock waves. AIAA Paper, 42nd Plasmadynamics and Lasers Conference, Honolulu, HI,, 2011-3921, June 2011.

58D. J. Mavriplis. Multigrid techniques for unstructured meshes. Technical report, Institute for computer applications on
science and engineering (ICASE), 1995.

59D. J. Mavriplis. On convergence acceleration techniques for unstructured meshes. Technical report, Institute for computer
applications on science and engineering (ICASE), 1998.

60D.J. Mavriplis. Discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes.
AIAA Journal, 45(4):740–750, 2007.

61S. Medida and J. Baeder. Numerical prediction of static and dynamic stall phenomena using the γ − Reθt transition
model. In American Helicopter Society 67th Annual Forum, Virginia Beach, VA, May 2011.

62F.R. Menter. Zonal two equation k − ω, turbulence models for aerodynamic flows. AIAA Paper, 93-2906, 1993.
63B. Mohammadi and O. Pironneau. Shape optimization in fluid mechanics. Annual Rev. Fluids Mechanics, 36:255–279,

2004.
64S.K. Nadarajah and A. Jameson. A comparison of the continuous and discrete adjoint approach to automatic aerody-

namic optimization. AIAA Paper, 2000-0667, 2000.
65R. J. Nowak and M. C. Yuen. Heat transfer to a hemispherical body in a supersonic argon plasma. AIAA Journal,

2(2):1463–1464, 1973.
66F. Palacios and J. J. Alonso. New convergence acceleration techniques in the Joe code. Technical report, Center for

Turbulence Research, Annual Research Brief 2011, 2011.
67F. Palacios, J. J. Alonso, M. Colonno, J. Hicken, and T. Lukaczyk. Adjoint-based method for supersonic aircraft design

using equivalent area distributions. AIAA Paper 2012-0269, 2012.

59 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

68F. Palacios, J. J. Alonso, and A. Jameson. Shape sensitivity of free-surface interfaces using a level set methodology.
AIAA Paper 2012-3341, 2012.

69F. Palacios, K. Duraisamy, J. J. Alonso, and E. Zuazua. Robust grid adaptation for efficient uncertainty quantification.
AIAA Journal, 50(7):1538–1546, 2012.

70C. Park. Nonequilibrium Hypersonic Aerothermodynamics. Wiley, New York, NY, 1990.
71N.A. Pierce and M.B. Giles. Preconditioned multigrid methods for compressible flow calculations on stretched meshes.

J. Comput. Phys., 136:425–445, 1997.
72O. Pironneau. On optimum design in fluid mechanics. J. Fluid Mech., 64:97–110, 1974.
73A. Quarteroni and A. Valli. Numerical aproximation of partial differential equations, volume 23 of Springer series in

computational mathematics. Springer-Verlag Berlin Heidelberg New York, 1997.
74C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning, pages 13–30. MIT Press, Cambridge,

MA, 2006.
75P.L. Roe. Approximate riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics,

43:357–372, 1981.
76C. Rumsey and et al. The menter shear stress turbulence model. World Wide Web electronic publication, 2012.
77Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems.

SIAM J. Sci. Stat. Comput., 7:856–869, 1986.
78J. A. Samareh. Aerodynamic shape optimization based on free-form deformation. AIAA Paper, 2004-4630, 2004.
79V. Schmitt and F. Charpin. Pressure distributions on the onera-m6-wing at transonic mach numbers. Technical Report

AGARD, Report AR-138, 1979.
80T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric models. Proceedings of SIGGRAPH 89

(Computer Graphics), 20(4):151–159, 1986.
81J.A. Sethian. Level set method and fast marching methods. Cambridge Monographs in Applied and Computational

Mathematics. Cambridge University Press, 2002.
82J.-P. Sokolowski, J. Zolesio. Introduction to shape optimization. Springer Verlag, New York, 1991.
83O. Soto, R. Lohner, and F. Camelli. A linelet preconditioner for incompressible flow solvers. Int. J. Numer. Meth. Heat

Fluid Flow, 13(1):133–147, 2003.
84P Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic flows. AIAA Paper, 92-0439, 1992.
85M. Sussman, P. Smereka, and . Osher. A level set approach for computing solutions to incompressible two-phase flow.

Journal of Computational Physics, 114(1):146–159, 1997.
86T. W. R. Taylor, F. Palacios, K. Duraisamy, and J. J. Alonso. Towards a hybrid adjoint approach for arbitrarily complex

partial differential equations. AIAA Paper 2012-3342, 2012.
87E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction. Springer-Verlag,

1999.
88E. Turkel. Preconditioning techniques in fluid dynamics. Technical report, School of Mathematical Sciences, Tel-Aviv

University, 1999.
89E. Turkel, V. N. Vatsa, and R. Radespiel. Preconditioning methods for low-speed flows. AIAA, 1996.
90H. A. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric

linear systems. SIAM J. Sci. and Stat. Comput., 13(2), 1992.
91B. van Leer. Towards the ultimate conservative difference scheme v. a second order sequel to godunov’s method. J.

Com. Phys., 32, 1979.
92W. Vincenti and C. H. Kruger Jr. Introduction to Physical Gas Dynamics. Krieger, 1965.
93C. Viozat. Implicit upwind schemes for low mach number compressible flows. Technical report, Institut National De

Recherche En Informatique En Automatique, 1997.
94J. L. Wagner, A. Valdivia, K. B. Yuceil, N. T. Clemens, and D. S. Dolling. An experimental investigation of supersonic

inlet unstart. AIAA Paper 2007-4352, 2007.
95J.M. Weiss, J.P. Maruszewski, and A.S. Wayne. Implicit solution of the Navier-Stokes equation on unstructured meshes.

AIAA Journal, 97-2103, 1997.
96P. Wesseling. Principles of computational fluid dynamics, volume 29 of Springer series in computational mathematics.

Springer-Verlag Berlin Heidelberg New York, 2000.
97F.M. White. Viscous Fluid Flow. McGraw Hill Inc., 1974.
98D.C. Wilcox. Turbulence Modeling for CFD. 2nd Ed., DCW Industries, Inc., 1998.
99S. Yoon and A. Jameson. Lower-Upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations.

AIAA Journal, 26(9), 1988.
100O.C. Zienkiewicz and R.L. Taylor. Finite Element Method, 6th ed., Vols. 1, 2 and 3. Elsevier, Oxford, UK, 2005.

60 of 60

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 T

ho
m

as
 E

co
no

m
on

 o
n

Ja
nu

ar
y

23
, 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

7

