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This paper presents a comprehensive set of test cases for the verification and validation
(V & V) of the Stanford University Unstructured (SU2) software suite within the context of
compressible, turbulent flows described by the Reynolds-averaged Navier-Stokes (RANS)
equations. SU2 is an open-source (Lesser General Public License, version 2.1), integrated
analysis and design tool for solving multi-disciplinary problems governed by partial differ-
ential equations (PDEs) on general, unstructured meshes. As such, SU2 is able to handle
arbitrarily complex geometries, mesh adaptation, and a variety of physical problems. At
its core, the software suite is a collection of C++ modules embedded within a Python frame-
work that are built specifically for both PDE analysis and PDE-constrained optimization,
including surface gradient computations using the continuous adjoint technique.

V & V studies of two- and three-dimensional problems are presented for turbulent
flows across a wide range of Mach numbers (from subsonic flat plate studies to a complex,
transonic aircraft configuration). The presentation of this comprehensive V & V of SU2

is intended to be the main contribution of this paper: the results generated with SU2 in
a variety of standard test cases compare well with experimental data and established flow
solvers that have undergone similar V & V efforts. For completeness, the adjoint-based
shape design capability within SU2 is also illustrated.

I. Introduction

The Stanford University Unstructured (SU2) software suite1 has been recently developed for the specific
task of solving PDE analyses and PDE-constrained optimization problems on general, unstructured meshes.
While the framework is general and meant to be extensible to arbitrary sets of governing equations for
solving multi-physics problems, the core of the suite is a Reynolds-averaged Navier-Stokes (RANS) solver
capable of simulating the compressible, turbulent flows that are characteristic of typical problems in aerospace
engineering. Furthermore, SU2 was constructed with aerodynamic shape optimization problems in mind,
and, therefore, adjoint-based sensitivity analysis is a key feature that is built directly into the RANS solver.

In order to increase our confidence in the results of any aerodynamic shape optimization problem, it is
critical to assess the accuracy of the baseline RANS solver to guarantee that the improvements obtained
can actually be realized. Moreover, since the code has been developed in an open-source environment, it is
important to establish the accuracy of the results that it produces through a detailed validation study. The
intent is to provide a clear expectation regarding what SU2 can and cannot do. In this paper, we tackle
this task by applying SU2 across the flow regimes of interest in the aerospace sciences. In particular, the
following 12 test cases have been chosen as a representative set of the broader range of Computational Fluid
Dynamics (CFD) applications for which SU2 could be used:
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• Unit/Test problems: a zero pressure gradient flat plate, a bump in a channel, and unsteady flow around
a square cylinder.

• Subsonic airfoil geometries: the NACA 0012 with attached flow, the NACA 4412 with a recirculation
bubble, and the McDonnell-Douglas 30P30N three-element high-lift configuration.

• Subsonic wing and rotorcraft configurations: a delta wing at a high angle of attack and the Caradonna
and Tung rotor.

• Transonic airfoil geometries: the NACA 0012 with attached flow after a shock and the RAE 2822 with
flow separation.

• Transonic wing and full aircraft configurations: the ONERA M6 wing and the DLR F6 aircraft model.

For each of the V & V cases listed above, we will present the results computed by SU2 and compare
them against experimental data and/or results from other simulation codes, when available. The flow /
boundary conditions, the details of the computational mesh, the numerical discretization methods of choice,
and a discussion of results for the major quantities of interest will be clearly detailed for each case. This
comprehensive V & V process is intended to be the main contribution of this paper: it will demonstrate the
accuracy of the results generated by the open-source SU2 RANS solver for a wide range of problems. These
demonstrations are supposed to serve as a future reference for the technology built into the SU2 suite for
the solution of turbulent flows.

However, a verified and validated RANS solver is just one of the tools needed for performing aerodynamic
shape design. The shape design process in SU2 consists of separate C++ modules whose sequential execution is
automated within a Python framework. Each C++ module addresses a compute-intensive task in the process,
and, in order to maintain high computational efficiency, encourage code reuse, and ease the integration of
new features, the modules share a common set of classes and data structures within an object-oriented code
architecture.

More specifically, in addition to solving the RANS equations for a candidate design, the adjoint RANS
equations must also be solved for the purpose of sensitivity analysis for various functions of interest (lift,
drag, moments, etc.). The entire design problem also requires an infrastructure for shape parameterization,
grid deformation, and numerical optimization. SU2 contains the following modules for completing these
tasks:

• SU2 CFD: The RANS CFD solver, which includes a solver for the adjoint RANS equations.

• SU2 GPC: The Gradient Projection Code that allows for the calculation of sensitivities for use in
optimization given a particular shape parametrization and the surface sensitivities from an adjoint
solution.

• SU2 MDC: The Mesh Deformation Code that can be used to perturb an existing volume mesh to
conform to new surface geometries dictated by shape optimization.

Although the main focus of this paper is the V & V of the RANS solver, the adjoint-based shape design
capability is demonstrated for the DLR F6 configuration. The true power of the open-source SU2 suite lies
in combining the efficient solution of the RANS equations (with industry-standard numerical methods in the
presence of complex geometries) and the surrounding infrastructure for automatic shape design.

SU2 is under active development in the Aerospace Design Lab (ADL) of the Department of Aeronautics
and Astronautics at Stanford University. It has been released under an open-source license and is freely
available to the community, so that developers around the world can continue the V & V process, contribute
to the source code, and further improve the accuracy and capabilities of the suite. As described above, the
modern structure of SU2 makes it an ideal vehicle for multi-physics simulations and aerodynamic shape op-
timization. To accomplish this, the SU2 development team has included industry-standard solver technology
for turbulent flows while also developing numerical solution algorithms that result in robust, high rates of
convergence. Lastly, from the point of view of design optimization, SU2 includes continuous adjoint solver
implementations for efficiently computing shape design gradients that we hope can be further improved via
contributions from the community.

The paper is organized as follows. Section II describes the set of RANS equations (including the Spalart-
Allmaras and SST turbulence models) and the corresponding adjoint RANS equations used in our work. It
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includes a brief description of the main numerical discretization techniques to be verified and validated (more
details of the discretization alternatives in SU2 can be found in our previous work1). Section III provides a
case-by-case validation study for each of the 12 test cases described earlier. Our conclusions are summarized
in section IV.

II. Governing Equations & Discretization

A. Reynolds-averaged Navier-Stokes Equations

We are concerned with time-accurate, viscous flow around aerodynamic bodies in arbitrary motion which
is governed by the compressible, unsteady Navier-Stokes equations. Consider the equations in a domain,
Ω ⊂ R3, with a disconnected boundary that is divided into a far-field component, Γ∞, and an adiabatic wall
boundary, S, as seen in Fig. 1. The surface S represents the outer mold line of an aerodynamic body, and
it is considered continuously differentiable (C1). These conservation equations along with a generic source
term, Q, can be expressed in an arbitrary Lagrangian-Eulerian (ALE)2 differential form as

R(U) = ∂U
∂t +∇ · ~F cale −∇ · ~F v −Q = 0 in Ω, t > 0

~v = ~uΩ on S,

∂nT = 0 on S,

(W )+ = W∞ on Γ∞,

(1)

where the conservative variables are given by U = {ρ, ρ~v, ρE}T, and the convective fluxes, viscous fluxes,
and source term are

~F cale =


ρ(~v − ~uΩ)

ρ~v ⊗ (~v − ~uΩ) + ¯̄Ip

ρE(~v − ~uΩ) + p~v

 , ~F v =


·
¯̄τ

¯̄τ · ~v + µ∗totcp∇T

 , Q =


qρ

~qρ~v
qρE

 , (2)

where ρ is the fluid density, ~v = {v1, v2, v3}T ∈ R3 is the flow speed in a Cartesian system of reference, ~uΩ

is the velocity of a moving domain (mesh velocity after discretization), E is the total energy per unit mass,
p is the static pressure, cp is the specific heat at constant pressure, T is the temperature, and the viscous
stress tensor can be written in vector notation as

¯̄τ = µtot

(
∇~v +∇~vT − 2

3
¯̄I(∇ · ~v)

)
. (3)

⌦
�1

S
~nS

~n�1

Figure 1. Notional schematic of the flow do-
main, Ω, the boundaries, Γ∞ and S, as well
as the definition of the surface normals.

The second line of Eqn. 1 represents the no-slip condition at
a solid wall, the third line represents an adiabatic condition
at the wall, and the final line represents a characteristic-based
boundary condition at the far-field3 with W representing the
characteristic variables.

Including the boundary conditions given in Eqn. 1, the com-
pressible RANS solver in SU2 currently supports the following
boundary condition types: Euler (flow tangency) and sym-
metry wall, no-slip wall (adiabatic and isothermal), far-field
and near-field boundaries, characteristic-based inlet bound-
aries (stagnation, mass flow, or supersonic conditions pre-
scribed), characteristic-based outlet boundaries (back pressure
prescribed), periodic boundaries, nacelle inflow boundaries (fan
face Mach number prescribed), and nacelle exhaust boundaries
(total nozzle temp and total nozzle pressure prescribed).

The boundary conditions listed above make SU2 suitable
for computing both external and internal flows. Note that the
boundary conditions also take into account any domain motion,
but for problems on fixed grids (~uΩ = 0), Eqn. 1 reduces to a
purely Eulerian formulation. While all of the validation cases in this article are for turbulent flows on static
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meshes, SU2 is capable of solving unsteady flows on both rigidly transforming and dynamically deforming
meshes. For unsteady problems, the temporal conditions will be problem dependent, and in this work, we will
be interested in time-periodic flows where the initial and terminal conditions do not affect the time-averaged
behavior over the time interval of interest, T = tf − to. For steady problems, we will use the free-stream
fluid state as the initial condition for the mean flow, and this is a typical practice in external aerodynamics.

Assuming a perfect gas with a ratio of specific heats, γ, and gas constant, R, the pressure is determined
from p = (γ − 1)ρ [E − 0.5(~v · ~v)], the temperature is given by T = p/(ρR), and cp = γR/(γ − 1). In accord
with the standard approach to turbulence modeling based upon the Boussinesq hypothesis,4 which states
that the effect of turbulence can be represented as an increased viscosity, the total viscosity is divided into a
laminar, µdyn, and a turbulent, µtur, component. In order to close the system of equations, the dynamic vis-
cosity, µdyn, is assumed to satisfy Sutherland’s law5 (function of temperature alone), the turbulent viscosity
µtur is computed via a turbulence model, and

µtot = µdyn + µtur, µ∗tot =
µdyn
Prd

+
µtur
Prt

, (4)

where Prd and Prt are the dynamic and turbulent Prandtl numbers, respectively.
The turbulent viscosity, µtur, is obtained from a suitable turbulence model involving the flow state and

a set of new variables. The Shear Stress Transport (SST) model of Menter and the Spalart-Allmaras (S-A)
model are the two most common and widely used turbulence models for the analysis and design of engineering
applications affected by turbulent flows. These two models will be used throughout the validation portion
to the article, and brief descriptions of the two models are given below.

Spalart-Allmaras (S-A) Model: In the case of the one-equation Spalart-Allmaras6 turbulence model,
the turbulent viscosity is computed as

µtur = ρν̂fv1, fv1 =
χ3

χ3 + c3v1

, χ =
ν̂

ν
, ν =

µdyn
ρ

. (5)

The new variable ν̂ is obtained by solving a transport equation where the convective, viscous, and source
terms are given as follows:

~F c = ~vν̂, ~F v = −ν + ν̂

σ
∇ν̂, Q = cb1Ŝν̂ − cw1fw

(
ν̂

dS

)2

+
cb2
σ
|∇ν̂|2, (6)

where the production term Ŝ is defined as Ŝ = |~ω| + ν̂
κ2d2S

fv2 , ~ω = ∇ × ~v is the fluid vorticity, dS is the

distance to the nearest wall, and fv2 = 1 − χ
1+χfv1

. The function fw is computed as fw = g
[

1+c6w3

g6+c6w3

]1/6
,

where g = r + cw2(r6 − r) and r = ν̂
Ŝκ2d2S

. Finally, the set of closure constants for the model is given by

σ = 2/3, cb1 = 0.1355, cb2 = 0.622, κ = 0.41, cw1 =
cb1
κ2

+
1 + cb2
σ

, cw2 = 0.3, cw3 = 2, cv1 = 7.1. (7)

The physical meaning of the far-field boundary condition for the turbulent viscosity is the imposition of
some fraction of the laminar viscosity at the far-field. On viscous walls, ν̂ is set to zero, corresponding to
the absence of turbulent eddies very near to the wall.

Menter Shear Stress Transport (SST) Model: The Menter SST turbulence model7 is a two equa-
tion model for the turbulent kinetic energy, k, and specific dissipation, ω, that consists of the blending of
the traditional k − ω and k − ε models. The definition of the eddy viscosity, which includes the shear stress
limiter, can be expressed as

µtur =
ρa1k

max(a1ω, SF2)
, (8)

where S =
√

2SijSij and F2 is the second blending function. The convective, viscous, and source terms for
the turbulent kinetic energy are

~F c = ρk~v, ~F v = −(µdyn + σkµtur)∇k, Q = P − β∗ρωk, (9)
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where P is the production of turbulent kinetic energy. The convective, viscous, and source terms for the
specific dissipation are given by

~F c = ρω~v, ~F v = −(µdyn + σωµtur)∇ω, Q =
γ

νt
P − β∗ρω2 + 2 ∗ (1− F1)

ρσω2

ω
∇k∇ω, (10)

where F1 is the first blending function. The values for the constants and the forms for the blending functions
and auxiliary relations are detailed in Rumsey8 and Menter.7

B. Continuous Adjoint Navier-Stokes Equations

A typical aerodynamic shape optimization problem seeks the minimization of a cost function, J(S) (lift,
drag, moment, etc.), as chosen by the designer, with respect to changes in the shape of the boundary S. For
the present description, we will focus on integrated forces and moments on the solid surface which depends
on a scalar, j, evaluated at each point on S. Other objectives are possible, such as functions based on surface
temperature or surface heat flux, for instance.

We note that any changes to the shape of S will result in perturbations in the fluid state, U , in the domain,
and that these variations in the state are constrained to satisfy the RANS equations, i.e., R(U) = 0 must
be satisfied for any candidate shape of S. Therefore, the optimal shape design problem can be formulated
as a PDE-constrained optimization problem:

min
S
J(S) =

∫
S

j(~f, ~n) ds

subject to: R(U) = 0 (11)

where ~f = (f1, f2, f3) is the time-dependent force on the surface (from fluid pressure and viscous stresses)
and ~n is the outward-pointing unit vector normal to the surface S. We will parameterize the shape by an
infinitesimal deformation of size δS along the normal direction ~n to the surface S. The new surface obtained
after the deformation is then given by S′ = {~x+ δS ~n, ~x ∈ S}.

Using the continuous adjoint approach, the computation of the objective function gradient with respect
to perturbations of the geometry will require the solution of the adjoint RANS equations given by

−∂ΨT

∂t −∇ΨT ·
(
~Ac − µktot ~Avk

)
−∇ ·

(
∇ΨT · µktot ¯̄Dvk

)
−ΨT ∂Q

∂U = 0 in Ω, t > 0

~ϕ = ~d on S,

∂n(ψρE) = 0 on S,

(12)

where Ψ are the adjoint variables and we have introduced the following Jacobian matrices,9,10

~Ac =
(
Acx, A

c
y, A

c
z

)
, Aci =

∂ ~F c
i

∂U

∣∣∣
U(x,y,z)

~Avk =
(
Avkx , A

vk
y , A

vk
z

)
, Avki =

∂ ~Fvk
i

∂U

∣∣∣
U(x,y,z)

¯̄Dvk =

 Dvk
xx Dvk

xy Dvk
xz

Dvk
yx Dvk

yy Dvk
yz

Dvk
zx Dvk

zy Dvk
zz

 , Dvk
ij =

∂ ~Fvk
i

∂(∂jU)

∣∣∣
U(x,y,z)


i, j = 1 . . . 3, k = 1, 2. (13)

After satisfying the adjoint system, the final expression for the functional variation will become a surface
integral that contains terms involving only the flow and adjoint variables multiplied by δS:

δJ(S) =

∫
S

(~n · ¯̄Σϕ · ∂n~v − µ2
totCp∇Sψ5 · ∇ST ) δS ds, (14)

where ∇S represents the tangential gradient operator on S, and ¯̄Σϕ = µtot(∇~ϕ + ∇~ϕT − 2
3

¯̄I∇ · ~ϕ), which
depends on the gradient of the adjoint variables. This computable formula is what we call the surface
sensitivity, and it is the key result of the continuous adjoint derivation. The surface sensitivity provides a
measure of the variation of the objective function with respect to infinitesimal variations of the surface shape
in the direction of the local surface normal. This value is computed at every surface node of the numerical
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grid with negligible computational cost. In this manner, the functional variation for an arbitrary number of
shape perturbations will be computable at the fixed cost of solving the flow and adjoint PDE systems.

The ability to recover an analytic expression as a surface integral for the variation of the functional
is commonly referred to as a surface formulation for computing gradients (with no dependence on volume
mesh sensitivities). After early work in the area of continuous adjoints on unstructured meshes,11,12 this
type of surface formulation based on shape calculus was first demonstrated by Castro et al.13 for inviscid
and laminar flows and later extended to turbulent flows using the S-A turbulence model.9 Extensions and
advances of this formulation form much of the recent research activity within the SU2 suite. In particular,
the formulation has been extended to sonic boom minimization for supersonic aircraft,14 aerodynamic design
for unsteady problems on dynamic meshes,10,15,16 mesh adaptation and design in nonequilibrium hypersonic
flows,17 and design for free-surface flows.18,19

C. Numerical Implementation

A brief overview of the implementation details for the pertinent numerical methods is given below. Both the
flow and adjoint problems are solved numerically on unstructured meshes with an edge-based data structure.
Following the method of lines, the governing equations are discretized in space and time separately. This
decoupling of space and time allows for the selection of different types of schemes for the spatial and temporal
integration. Spatial integration is performed using the finite volume method (FVM), while integration in
time is achieved through several available explicit and implicit methods. For time-accurate calculations, a
dual time-stepping approach is used.

1. Spatial Integration via the Finite Volume Method

Partial Differential Equations (PDEs) in SU2 are discretized using a finite volume method3,20–27 with a
standard edge-based structure on a dual grid with control volumes constructed using a median-dual, vertex-
based scheme. Median-dual control volumes are formed by connecting the centroids, face, and edge-midpoints
of all cells sharing the particular node. After integrating the governing equations over a control volume and
applying the divergence theorem, the semi-discretized, integral form of a typical PDE (such as the RANS
equations above) is given by,∫

Ωi

∂U

∂t
dΩ +

∑
j∈N (i)

(F̃cij + F̃vij )∆Sij −Q|Ωi| =
∫

Ωi

∂U

∂t
dΩ +Ri(U) = 0, (15)

where U is the vector of state variables, and Ri(U) is the numerical residual representing the integration of
the spatial terms. F̃cij and F̃vij are the projected numerical approximations of the convective and viscous
fluxes, respectively, and Q is a source term. ∆Sij is the area of the face associated with the edge ij, Ωi is
the volume of the control volume, and N (i) is the set of neighboring nodes to node i.

The convective and viscous fluxes are evaluated at the midpoint of an edge. The numerical solver loops
through all of the edges in the primal mesh in order to calculate these fluxes and then integrates them
to evaluate the residual at every node in the numerical grid. The convective fluxes can be discretized
using centered or upwind schemes in SU2. Several numerical schemes have been implemented (JST,28

Roe,29 AUSM,30 HLLC,27 Roe-Turkel,31 to name a few), and the code architecture allows for the rapid
implementation of new schemes. Limiters are available for use with higher-order reconstructions for the
upwind convective schemes. In order to evaluate the viscous fluxes using a finite volume method, flow
quantities and their first derivatives are required at the faces of the control volumes. The gradients of the
flow variables are calculated using either a Green-Gauss or weighted least-squares method at all grid nodes
and then averaged to obtain the gradients at the cell faces. Source terms are approximated using piecewise
constant reconstruction within each of the finite volume cells.

2. Time Integration

Eqn. 15 must be valid over the entire time interval, so one has to make the choice of evaluating Ri(U) either
at time tn (explicit methods) or tn+1 (implicit methods). Focusing on the implicit integration (SU2 also has
an Euler Explicit and a Runge-Kutta explicit method), the following linear system should be solved to find
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the solution update (∆Uni ), (
|Ωi|
∆tni

δij +
∂Ri(U

n)

∂Uj

)
·∆Unj = −Ri(Un), (16)

where ∆Uni = Un+1
i − Uni and if a flux F̃ij has a stencil of points {i, j}, then contributions are made to the

Jacobian at four points:

∂R

∂U
:=

∂R

∂U
+



. . .
∂F̃ij

∂Ui
· · · ∂F̃ij

∂Uj

...
. . .

...

−∂F̃ij

∂Ui
· · · −∂F̃ij

∂Uj

. . .


. (17)

The SU2 framework includes the implementation of several linear solvers for solving Eq. 16. Currently, the
following methods are available:

• The Generalized Minimal Residual (GMRES) method,32 which approximates the solution by the vector
in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector.

• The Biconjugate Gradient Stabilized (BiCGSTAB) method,33 also a Krylov subspace method. It is a
variant of the biconjugate gradient method (BiCG) and has faster and smoother convergence properties
than the original BiCG.

For unsteady flows, a dual time-stepping strategy34,35 has been implemented to achieve high-order accu-
racy in time. In this method, the unsteady problem is transformed into a steady problem at each physical
time step which can then be solved using all of the well-known convergence acceleration techniques for steady
problems. The current implementation of the dual-time stepping approach solves the following problem

∂U

∂τ
+R∗(U) = 0, (18)

where

R∗(U) =
3

2∆t
U +

1

|Ω|n+1

(
R(U)− 2

∆t
Un|Ω|n +

1

2∆t
Un−1|Ω|n−1

)
, (19)

where ∆t is the physical time step, τ is a fictitious time used to converge the steady state problem, R(U)
denotes the residual of the governing equations, and U = Un+1 once the steady problem is satisfied.

3. Convergence Acceleration

Due to the nature of most iterative methods/relaxation schemes, high-frequency errors are usually well
damped, but low-frequency errors (global error spanning the larger solution domain) are less damped by the
action of iterative methods that have a stencil with a local area of influence. To combat this, SU2 contains
an agglomeration multigrid implementation that generates effective convergence at all length scales of a
problem by employing a sequence of grids of varying resolution (SU2 can automatically generate the coarse
grids from the provided fine grid at runtime). Simply stated, the main idea is to accelerate the convergence
of the numerical solution of a set of equations by computing corrections to the fine-grid solutions on coarser
grids and applying this idea recursively.36–40

Preconditioning is the application of a transformation to the original system that makes it more suitable
for numerical solution.41 In particular, a linelet preconditioner has been implemented to improve the conver-
gence rate of the Krylov subspace linear solvers.37,42 A Roe-Turkel31 preconditioning for low Mach number
flows is available, and a Lower-Upper Symmetric-Gauss-Seidel (LU-SGS) method43–45 is used to increase the
convergence speed of the code.

III. Validation

A. Unit/Test Problems

1. Turbulent Flat Plate
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M∞ 0.2

ReL 5e6

T∞ 300K

α 0◦

Rν̃(U) SA & SST

Table 1. Flat plate free-stream con-
ditions.

Case Description Flow over a flat plate with zero pressure gra-
dient is a useful validation case for any implementation of a turbu-
lence model. Comparison data, computed using the code CFL3D, is
available through the NASA Langley Research Center.46 The flow
conditions used for this case are summarized in Table 1. The imple-
mentations of both the SST and S-A models in SU2 are considered,
and both are found to agree with the available solution data.

Computational Domain A rectangular mesh made up of rectan-
gular elements is considered. The grid is shown in Fig. 2. The grid has
137× 97 cells in the stream-wise and normal directions, respectively.

Total temperature and pressure are prescribed at the inlet. At the
upper and outlet boundaries, only the back pressure is prescribed. The
remaining quantities are computed using Riemann invariants. A symmetry condition is applied upstream of
the flat plate on the lower boundary, and at the wall, a no-slip condition is enforced.

(a) Full domain. (b) Leading edge zoom.

Figure 2. Flat plate computational grids.

Numerical Methods The mean flow is computed using the Roe scheme with second-order reconstruction
and the Venkatakrishnan limiter. For baseline verification of the turbulence models, the S-A and SST
equations are solved using a fully-upwind scheme with both first- and second-order reconstruction. A fixed
CFL of 10.0 is used for all cases presented in this section.

Results Fig. 3(a) shows the skin friction coefficient, Cf , plotted against the momentum thickness Reynolds
number, Reθ. The quantity Reθ is determined by a trapezoidal integration of the flow solution. Both first-
and second-order convective discretizations are shown. In Fig. 3(b), the typical velocity profile for a turbulent
boundary layer is plotted. Very good agreement is observed between codes and turbulence models in the
sublayer and log layer.

2. Turbulent Bump in a Channel

Case Description Flow over a bump in a channel is another useful validation case for turbulence models,
as it introduces non-zero pressure gradients on the wall. Comparison data, computed using the CFL3D and
FUN3D codes, is available through the NASA Langley Research Center.47 The flow conditions used for this
case are summarized in Table 2. The implementation of the SST model in SU2 is considered.
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(a) Skin friction coefficient.

log
10

(y
+
)

u
+

2 1 0 1 2 3 4 5
0

5

10

15

20

25

30

(b) Velocity profile, u+ vs y+.

Figure 3. Verification of the zero pressure gradient flat plate.

M∞ 0.2

ReL 3e6

T∞ 540R

α 0◦

Rν̃(U) SST

Table 2. Flow conditions for the
bump in a channel case.

Computational Domain A mesh made up of rectangular elements
is considered. The bump is an adiabatic solid wall, and it extends
between x = 0 and x = 1.5. The overall flow domain and boundary
conditions are shown in Fig. 4(a). The grid has 352× 160 cells in the
stream-wise and normal directions, respectively. The grid near the
bump is shown in Fig. 4(b).

Total temperature and pressure are prescribed at the inlet. At the
outlet, only the back pressure is prescribed. The remaining quantities
are computed using Riemann invariants. Symmetry conditions are
applied up-stream and down-stream of the bump section as well as
along the upper wall. A no-slip condition is enforced on the bump
surface.

(a) Boundary conditions. (b) Mesh near the bump.

Figure 4. Bump in a channel problem setup and mesh.

Numerical Methods The mean flow is computed using the Roe scheme with second-order reconstruction
and the Venkatakrishnan limiter. The SST equations are solved using a fully-upwind scheme with second-
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order reconstruction and a fixed CFL of 5.0.

Results The data were compared to results from FUN3D and CFL3D simulations which were run on a
very fine grid (1408×640 cells).47 Fig. 5(a) shows the pressure coefficient, Cp, plotted against the x-location.
Excellent agreement is observed between the different codes. Fig. 5(b) shows contours of turbulent viscosity
non-dimensionalized by the free-stream viscosity, and, while not shown here, results from SU2 compare well
to those of CFL3D.

x

C
P

0 0.5 1 1.5

0.6

0.4

0.2

0

0.2

SU
2
 SST

CFL3D SST

FUN3D SST

(a) Pressure coefficient vs. x-location (b) Contours of non-dimensionalized turbulent viscosity.

Figure 5. Verification of the bump in a channel case.

3. Square Cylinder

Case Description To demonstrate the use of the unsteady RANS equations in SU2 for solving time-
accurate problems, a square cylinder test case has been chosen. This case exhibits typical features en-
countered in flows past bluff bodies, such as separation, recirculation, and vortex shedding. The obtained
simulation results are compared with experimental data from Lyn et al.,48 Lee,49 and Vickery,50 as well as
with computational results obtained from Rodi et al.51 and Iaccarino et al.52

M∞ 0.2

ReL 22, 000

T∞ 273.15K

Rν̃(U) SA

Table 3. Square cylinder free-stream
conditions.

Computational Domain A two-dimensional, hybrid-element mesh
with a rectangular far-field has been used with 22,500 total elements.
The domain size is 20h x 14h in the stream-wise and span-wise direc-
tions, respectively, as recommended by Rodi et al.51 and Iaccarino et
al.52 The value of h is one, and it is the characteristic length of the
square cylinder. The square cylinder is located at x = 5h. The struc-
tured portion of the mesh is clustered close to the surface to better
capture the boundary layer, and the spacing near the wall is 8.1E − 4
which is enough to guarantee y+ < 1. The unstructured portion of
the mesh starts at a distance of 0.1h from the wall. This distance
was chosen to guarantee that the boundary layer will remain in the
structured portion of the grid.

Characteristic-based far-field conditions are applied at the outer domain boundaries. The square cylinder
walls have no-slip and adiabatic boundary conditions enforced.

Numerical Methods For the purpose of this study, the convective flux for the mean flow equations will
be calculated using the second-order JST scheme, and turbulence will be modeled using the S-A model. The
convective flux in the SA model has been discretized with an upwind first-order method for the convective
terms, and the viscous terms have been computed using a corrected average-gradient method. For time
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(a) Full domain. (b) View of the mesh near the square cylinder.

Figure 6. Square cylinder computational grids.

integration, a second-order accurate dual time stepping scheme was used with a physical time step of 0.0015
s and a convergence criteria of 5 orders of magnitude for the relaxation in pseudo-time at each physical time
step.

Contribution Model xr/h Cd c̃d c̃l St

Lyn et al., 1995 Experiments 1.38 2.1 − − 0.132

Lee et al., 1975 Experiments − 2.05 0.16− 0.23 − −
V ickery, 1966 Experiments − 2.05 0.1− 0.2 0.68− 1.32 −
Rodi et al., 1997 LES 1.32 2.2 0.14 1.01 0.13

Rodi et al., 1997 RANS k − ω 1.25 2.004 − − 0.143

Iaccarino et al., 2003 RANS v2 − f 1.45 2.22 0.056 1.83 0.141

Present RANS − SA 1.45 2.428 0.0289 2.7743 0.1402

Table 4. Results for the square cylinder Re = 22,000. xr/h is the recirculation length, Cd is the time averaged
drag coefficient, c̃d are the drag-coefficient fluctuations, c̃l are the lift coefficient fluctuations, and St is the
Strouhal number

Results As expected, the flow past a square cylinder exhibits a periodic vortex shedding in its wake. A
summary of the present results from SU2 and several experimental and computational data sets is presented
in Table 3. The frequency at which the cylinder’s wake is oscillating is characterized by the Strouhal number,
which is in good agreement with the experimental and computational results found in the literature. One
of the most important features that has to be analyzed is the recirculation region just downstream of the
cylinder. This region is formed due to separation, and the value measured is in good accordance with the
computational and experimental results. The average drag coefficient and lift coefficient fluctuations are
overestimated by this simulation, while the drag coefficient fluctuations are underestimated with respect to
the experimental data. A plausible explanation for the over-prediction of the average drag coefficient and
lift coefficient fluctuations is partially due to the lack of three-dimensional effects that are believed to have
a great influence on the lift coefficient fluctuations.52 On the other hand, the effect of different turbulence
models on separation prediction should be carefully analyzed.

A qualitative picture of the fluid streamlines laid over a Mach number contour plot is presented in Fig. 7.
These plots clearly show the periodic vortex shedding in the cylinder’s wake. In addition, we can clearly see
that vortices are shed alternating from each side of the cylinder, which are then convected downstream. The
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(a) t = 1/4 T. (b) t = 1/2 T

(c) t = 3/4 T. (d) t = T.

Figure 7. Time history of the streamlines past a square cylinder (T represents the period).
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qualitative results shown are in agreement with the results presented by Iaccarino et al.52

B. Subsonic Airfoil Geometries

1. NACA 0012 Airfoil

Case Description This test case simulates two-dimensional flow over a NACA 0012 airfoil under es-
sentially incompressible free-stream conditions as specified by the AIAA Turbulence Model Benchmarking
Working Group (TMBWG). SU2 simulation outputs of pressure and skin friction coefficients are compared
to published experimental data from Gregory,53 and from NASA’s CFL3D software at two angles of attack.
The S-A and SST turbulence models are used for this test case, and the free-stream conditions are shown in
Table 5.

M∞ 0.15

Rec 6M

T∞ 300K

α 10◦, 15◦

Rν̃(U) S-A & SST

Table 5. NACA 0012 free-stream
conditions.

Computational Domain The two-dimensional discretized volume
consists of a C-mesh of quadrilateral elements conforming to the air-
foil surface with 897 nodes in the airfoil-normal and 257 in the airfoil-
tangent directions and is provided by the TMBWG (see Fig. 8). Do-
main boundaries for this case are placed 500 chord lengths from the
airfoil surface to minimize the effect of the far-field boundaries on the
surface solution. Characteristic-based far-field boundary conditions
are applied to the outer domain boundaries, and an adiabatic wall
boundary condition is enforced on the airfoil surface. Mesh spacing at
the airfoil boundary is 1.5E−6 and is sufficient to ensure y+ < 1 over
the airfoil surface.

(a) Full domain. (b) View of the mesh near the airfoil surface.

Figure 8. NACA 0012 computational grids.

Numerical Methods Three different second-order spatial dis-
cretization schemes are used to calculate the convective fluxes for this test case: JST, Roe, and HLLC.
For the upwind methods, Venkatakrishnan’s limiter is used on the primitive variables. Turbulent variables
for the S-A and SST models are convected using a first-order scalar upwind method, and the viscous fluxes
are calculated using a corrected average-gradient method. Implicit, local time-stepping is used to converge
the problem to the steady-state solution, and the linear system is solved using the GMRES method with a
maximum error tolerance of O(10−6) for each nonlinear iteration of the flow solver.

Results Airfoil surface pressure and skin friction coefficients are shown in Fig. 9 for the two angle of attack
conditions. The computed SU2 solutions are in good agreement with the published data from Gregory. The
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(a) Cp at α = 10◦. (b) Cf at α = 10◦.

(c) Cp at α = 15◦. (d) Cf at α = 15◦.

Figure 9. NACA 0012 surface pressure and skin friction coefficients.
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computed values match the experimental pressure coefficient through the suction peak, the pressure recovery
region, and back to the trailing edge for both angles of attack. When co-plotted, the effect of the convective
scheme and turbulence model on the surface pressure is negligible at the specified run conditions. As there is
no known reference for skin friction data for this test case, results are compared to outputs from CFL3D using
the S-A turbulence model. Generally, there is good agreement with the NASA solver, though the selection
of the convective numerical method and turbulence model does influence the predicted skin friction.

2. NACA 4412 Airfoil

Case Description This test case simulates two-dimensional flow over a NACA 4412 airfoil under essen-
tially incompressible free-stream conditions as specified by the NASA Langley Research Center.8 Pressure
coefficient values compute by SU2 are compared to published experimental data from Coles and Wadcock54,55

and results from NASA’s CFL3D software. The S-A and SST turbulence models are used for this test case
and the free-stream conditions are shown in Table 6.

M∞ 0.09

Rec 1.52M

T∞ 300K

α 13.87◦

Rν̃(U) S-A & SST

Table 6. NACA 4412 free-stream
conditions.

Computational Domain The two-dimensional discretized volume
consists of an unstructured, O-mesh conforming to the airfoil surface
with 36,145 total elements with 325 edges making up the airfoil bound-
ary and 100 edges on the far-field boundary. It is a hybrid-element
mesh with quadrilaterals in the region adjacent to the airfoil surface
and triangles in the remaining portion of the computational domain.
The far-field boundary is located approximately 20 chord lengths away
from the airfoil. A characteristic-based far-field condition is applied to
the outer domain boundary, and an adiabatic, no-slip wall boundary
condition is enforced on the airfoil surface. Mesh spacing at the airfoil
boundary is 1E-5 and is sufficient to ensure y+ < 1 over the airfoil
surface.

(a) Full domain. (b) View of the mesh near the airfoil surface.

Figure 10. NACA 4412 computational grids.

Numerical Methods Roe’s second-order upwind scheme is used to calculate the convective fluxes for this
test case. Venkatakrishnan’s limiter is used on the primitive variables. Turbulent variables for the S-A and
SST models are convected using a second-order scalar upwind method, and the viscous fluxes are calculated
using the corrected average-gradient method. Implicit, local time-stepping is used to converge the problem
to the steady-state solution, and the linear system is solved using the GMRES method with a maximum
error tolerance of O(10−6).

15 of 33

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

Fe
br

ua
ry

 1
0,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

02
43

 



(a) Coefficient of pressure. (b) Coefficient of skin friction.

Figure 11. Comparison of the NACA 4412 results from SU2 with the experiments and numerical simulations.

Results Airfoil surface pressure and skin friction coefficients are shown in Fig. 11(a) and 11(b), respec-
tively. The computed SU2 solutions for the coefficient of pressure are in good agreement with the published
data from Coles & Wadcock. The values computed by SU2 match the experimental pressure coefficient
through the suction peak and the pressure recovery region. When co-plotted, the effect of the turbulence
model on the surface pressure is negligible at the specified run conditions. The results are also compared
to outputs from CFL3D using the S-A and SST turbulence model. There is a slight mismatch between the
experimental data and the numerical results in the distribution of pressure near the trailing edge of this
airfoil due to the presence of a large separation bubble at such high angles of attack. However, the numerical
results from SU2 do match those from CFL3D. The solutions for the coefficient of skin friction also show
the expected behavior with the two turbulence models predicting similar results, but experimental results
are note available for comparison. It is worth noting that the simulation results from SU2 are for a blunt-
trailing-edge airfoil (like the experiments), while the published results for CFL3D use a slightly modified
airfoil with a sharp trailing edge.

3. 30P30N High-lift Configuration

M∞ 0.2

Recstowed
9M

T∞ 300K

α 8◦, 19◦

Rν̃(U) SST

Table 7. 30P30N free-stream condi-
tions.

Case Description This test case simulates two-dimensional flow
over a McDonnell-Douglas 30P30N high lift configuration. Pressure
and skin friction coefficient results from SU2 are compared with pub-
lished results from Rumsey56 and experimental data from Chin et al.57

at different angles of attack. The SST turbulence model is used for
this test case, and the free-stream conditions are shown in Table 7.

Computational Domain The simulations are run on a coarse and
a refined mesh for the same conditions (see Fig. 12). Both of the
two-dimensional meshes contain quadrilaterals cells in the near-wall
region (for good boundary layer resolution) and in the wake region, and
triangular cells are found everywhere else. Grid 1 contains O(400, 000)
cells, and Grid 2 contains O(700, 000) cells. Domain boundaries for
this case are placed 15 chord lengths from the geometry. Characteristic-based far-field conditions are applied
to the outer domain boundaries, and an adiabatic wall boundary condition is enforced on the airfoil surface.
Mesh spacing at the airfoil boundary is chosen to ensure y+ < 1 over the airfoil surface.

Numerical Methods Roe’s second-order upwind scheme is used to calculate the convective fluxes for
this test case. Venkatakrishnan’s limiter is applied to the primitive variables. Turbulent variables for the
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(a) Full domain. (b) High-lift configuration near-field.

Figure 12. McDonnell-Douglas 30P30N high-lift configuration computational grids.

SST model are convected using a first-order scalar upwind method, and the viscous fluxes are calculated
using the corrected average-gradient method. Implicit, local time-stepping is used to converge the problem
to the steady-state solution, and the linear system is solved using the GMRES method with a maximum
error tolerance of O(10−6) for each nonlinear iteration of the flow solver.

(a) Cp 8◦. (b) Cf 19◦.

Figure 13. Pressure and skin friction coefficient for the 30P30N configuration.

Results The Cp distributions for the 30P30N configuration from both grids are compared with experimen-
tal results from Chin et al.57 The Cp distribution over the main element is captured well at both the leading
and trailing edges, as seen in Fig. 13. The main discrepancy between the computed and experimental results
is an over-prediction of the drop in Cp on the upper surface of the slat. The skin friction coefficient is also
compared for an angle of attack of 19 degrees with S-A results from Rumsey56 and experimental results.57

The Cl for this configuration is computed at different angles of attack. These are shown below in the Cl
vs. angle of attack plot in Fig. 14. The Cl values obtained using SU2 are fairly close to the experimental
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results57 for the lower angles of attack. For the higher angle of attack cases where separation is significant,
the Cl is under-predicted compared to the experimental results. This is probably because of the inability to
model accurately the effect of separation behind the slat, which results in a reduced pressure peak for both
the slat and the main element.

Figure 14. Cl vs. angle of attack for the 30P30N configuration.

C. Subsonic Wing and Rotor Configurations

1. Delta Wing

Case Description This test simulates a three-dimensional flow field over a delta wing with 75 degrees of
sweep at 20.5 degrees angle of attack (two stable leading edge vortices are present). The problem is modeled
at a Reynolds number of 0.9 million and Mach number of 0.3. In this particular simulation, the pressure
distribution computed with SU2 will be compared with experimental data.58 The free-stream conditions are
shown in Table 8.

M∞ 0.15

Rec 0.9M

T∞ 300K

α 20.5◦

Rν̃(U) Laminar flow, SA

Table 8. Swept delta wing free-
stream conditions.

Computational Domain The three-dimensional discretized vol-
ume consists of a 65x65x33 (span-wise, radial, chord-wise) hexahedral
numerical grid (see Fig. 15). Domain boundaries are placed 1.5 chord
lengths from the delta wing surface. Characteristic-based far-field con-
ditions are applied to the outer domain boundaries, and an adiabatic,
no-slip wall boundary condition is enforced on the delta wing sur-
face. Behind the delta wing there is a 20.5 degrees ramp created as a
byproduct of the structured grid generation technique.

Numerical Methods The JST convective scheme has been used
with a very low value for the fourth-order artificial dissipation of
O(10−4). The turbulent variable for the S-A model is convected using
a first-order scalar upwind method, and the viscous fluxes are calcu-
lated using the corrected average-gradient method. Implicit, local time-stepping is used to converge the
problem to the steady-state solution, and the linear system is solved using the GMRES method with a
maximum error tolerance of O(10−6) for each nonlinear iteration of the solver.
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(a) Full domain. (b) Delta wing surface (including the 20.5 degree ramp).

Figure 15. Delta wing computational grids.

Results The steady state solution to this problem is characterized by two stable, leading edge vortices.
There is experimental data for velocity profiles, pressure on the surface, and the locations of the vortex
cores. In particular, the wing surface pressure coefficient is shown in Fig. 16 at 4 different sections (x/L =
0.3, 0.5, 0.7, 0.9). In general, the trend is well captured, and the agreement is acceptable (better near the
symmetry plane). However, further studies are required to understand the pressure discrepancies close to
the leading edge. The degenerate elements and the coarseness of the numerical grid appear to be the most
plausible causes for the discrepancies.

2. Caradonna and Tung Rotor

Mtip 0.439

Ω 1250RPM

θc 8◦

β0 0.5◦

M∞ 0

p∞ 95, 680Pa

ρ∞ 1.2168kg/m3

Rν̃(U) SA

Table 9. Caradonna and Tung flow
conditions.

Case Description The code’s ability to simulate three-dimensional,
viscous flows around rotor geometries is demonstrated by validating
against the well-known experimental results of Caradonna and Tung.59

The experiment comprises a two-bladed, rigid rotor in hover. The two
blades are identical: each has a rectangular planform with an aspect
ratio of 6, the rotor radius, R, is 1.143 m and the chord length, c, is
0.1905 m. The blades are untwisted, untapered, and maintain a con-
stant NACA 0012 airfoil section along their entire span. The present
study seeks to validate the specific test case wherein the blades are po-
sitioned at precone angle, β0, of 0.5 degrees and pitched upwards at a
collective angle, θc, of 8 degrees. When viewed from above, the blades
rotate in a clockwise direction at an angular velocity, Ω, of 1250 RPM
(i.e. 130.9 rad/s) - resulting in a tip Mach number, Mtip, of 0.439.
Naturally, inasmuch as the rotor is in hover, the free-stream condi-
tions are for still air. The general flow parameters are summarized in
Table 9.

The numerical experiment uses a full, two-bladed representation of the rotor geometry, as seen in
Fig. 17(a). Here, a time-accurate solution scheme is eschewed in favor of one in which the RANS equa-
tions are solved in a rotating reference frame, which offers significant savings in computational cost by
recovering a steady solution procedure for this problem. Navier-Stokes closure is achieved by means of the
S-A turbulence model. Validation of the numerical results will be done by comparing computed profiles of
pressure coefficient, Cp, at certain blade cross sections with experimental values reported by Caradonna and
Tung. It is well to mention that in the context of rotors, the coefficient of pressure is traditionally defined
as Cp = (p − p∞)/(0.5ρ∞Ω2r2), where p∞ is the ambient pressure, ρ∞ is the ambient density, and r is the
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(a) Cp distribution at wing section x/L = 0.3. (b) Cp distribution at wing section x/L = 0.5.

(c) Cp distribution at wing section x/L = 0.7. (d) Cp distribution at wing section x/L = 0.9.

Figure 16. Cp distribution at different delta wing sections.

20 of 33

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

Fe
br

ua
ry

 1
0,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

02
43

 



radial distance at which the cross section of interest resides.

(a) (b)

Figure 17. Computational set-up. (a) The physical geometry model of the two blades is seen embedded within
the discretized flow domain. (b) A cross section through the geometry shows the refinement of the volume
mesh near the blade surface.

Computational Domain The computational domain – seen in Fig. 17(a) – is an upright cylinder, which
is large enough to encapsulate the entire plane of rotation. This flow domain is discretized by a hybrid-
element mesh that uses 1.23 million tetrahedra, 3.06 million prisms, 26,478 pyramids, and 1.76 million nodes
in total. The mesh refinement near the blade surfaces, shown in Fig. 17(b), has been verified to produce an
acceptable dimensionless wall distance (y+ < 1).

Since the blade tips are not far from the upright walls of the cylindrical domain, the computational
setup must be prepared to accommodate both the rotor wake and the induced velocities that simultaneously
appear. This is accomplished by assigning characteristic-based inlet and outlet conditions to the outer
boundaries of the domain. A no-slip, adiabatic condition is enforced along the blade surfaces.

Numerical Methods The convective fluxes for the mean flow equations are computed using the JST
scheme. The turbulence working variable for the S-A model is convected using a first-order, scalar upwind
method. As with many of the other test cases presented, all of the viscous fluxes have been computed using
the average-of-gradients method, with a correction. The rotating-frame problem is driven to a steady state
by means of an implicit, local time-stepping scheme. At each pseudo-time step, the GMRES method is
employed to solve the linear system. The GMRES method is allowed to run for either 20 iterations or until
an error tolerance of O(10−6) is met.

Results The computational problem described above was converged to the point where the density residual
had decreased by three and a half orders of magnitude.

Because this case is simulating a rotor in hover, both blades see identical distributions of airloads along
their spans. In Fig. 18, Cp profiles at four different radial stations have been plotted against the experimental
data of Caradonna and Tung.

The SU2 RANS pressure distributions are in excellent agreement with the experimental data. Although
the experimental value of the suction peak is not quite matched at the four sections investigated, the values
of Cp throughout the pressure-recovery region, as well as along the trailing edge, are matched nearly exactly.

D. Transonic Airfoil Geometries

1. RAE 2822 Transonic Airfoil
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(a) r = 0.77724 m (b) r = 0.91440 m

(c) r = 1.01727 m (d) r = 1.09728 m

Figure 18. Comparison of SU2 results (solid lines) with the experimental data of Caradonna and Tung (open
squares). Cp distributions are plotted at various radial stations along the span of a given blade: (a) r/R = 0.68,
(b) r/R = 0.80, (c) r/R = 0.89, and (d) r/R = 0.96.
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Case 6 Case 9 Case 10

M∞ 0.729 0.730 0.750

Rec 6.5E6 6.5E6 6.2E6

T∞ 273.15K 273.15K 273.15K

α 2.31◦ 2.80◦ 2.80◦

Scheme JST & Roe HLLC HLLC

Rν̃(U) SST & SA SA SA

Table 10. RAE 2822 free-stream conditions.

Case Description The RAE 2822 airfoil is a super-
critical airfoil commonly used for validation of turbu-
lence models. The experimental cases 6, 9, and 10 from
AGARD60 are considered. The flow conditions for these
cases are detailed in Table 10. The flow conditions for
case 6 are used by NASA’s NPARC Alliance Verification
and Validation Archive61 and those of case 9 and 10 are
from DLR.62 These flow conditions are corrected from
those of AGARD60 to account for wind tunnel influences.

Computational Domain The mesh used is an un-
structured, O-grid that wraps around the RAE 2822 air-
foil. It has 22,842 elements in total with 192 edges mak-
ing up the airfoil boundary and 40 edges along the far-
field boundary. It is a hybrid-element mesh with quadrilaterals in the region adjacent to the airfoil surface
and triangles in the remaining portion of the computational domain, as seen in Fig. 19. The first grid point
off the airfoil surface is at a distance of 1E -5 chords, and the far-field boundary is located approximately one
hundred chord lengths away from the airfoil. Characteristic-based far-field boundary conditions are enforced
on the far-field boundary, and a no-slip, adiabatic boundary condition is enforced on the airfoil.

(a) Full domain. (b) View of the mesh near the airfoil surface.

Figure 19. RAE 2822 computational grids.

Numerical Methods The mean flow convective fluxes are calculated using the schemes listed in Table 10.
For the upwind methods, Venkatakrishnan’s limiter is used on the primitive variables. Turbulent variables
for the S-A and SST models are convected using a second-order scalar upwind method, and the viscous fluxes
are calculated using the corrected average-gradient method. Implicit, local time-stepping is used to converge
the problem to the steady-state solution, and the linear system is solved using the GMRES method with a
maximum error tolerance of O(10−6) for each nonlinear solver iteration. The effect of this error tolerance
on total solution time (wall clock) is also explored for this case in the results.

Results The coefficient of pressure obtained from the SU2 simulation of case 6 compares favorably with
the experimental data60 with a small discrepancy in the shock wave position, as presented in Fig. 20. This
discrepancy is also observed by the NASA studya. Changing the turbulence model (Fig. 20(a)) and the
mean flow convective flux scheme (Fig. 20(b)) lead to small differences in the coefficient of pressure that are
most apparent at the expansion region over the leading edge and at the shock wave location.

ahttp://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf05/raetaf05.html
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(a) Effect of turbulence model on Cp. (b) Effect of convective flux scheme on Cp.

Figure 20. RAE 2822 surface pressure distributions for case 6.

For case 6 (using JST and SST), the effect of the linear solver level of convergence on the total solution
time was investigated. Table 11 contains the results from this study. The flow solution was converged 6
orders of magnitude in the density residual while the level of convergence of the linear solver was varied from
1E -1 to 1E -8, which is approximately equivalent to performing 1 to 10 linear solver iterations, respectively.
A linear solver convergence criteria of 1E -2 (about 2 to 3 linear solver iterations) provided the fastest
convergence time, and this time is used to normalize the other time entries in Table 11. Note that, for this
problem, converging the linear solver more than 1E -2 is a waste of resources, as the number of nonlinear
solver iterations needed to reach the desired tolerance remains fixed at 2770, while the number of linear
iterations increases.

Convergence Linear Iter Time Solver Iter

1.0E -1 1-2 1.017 2900

1.0E -2 2-3 1.0 2770

1.0E -4 5 1.054 2770

1.0E -6 7-8 1.099 2770

1.0E -8 10 1.150 2770

Table 11. Effect of linear solver convergence on total solution time.

In addition to case 6, case 9 and 10 have also been simulated. The pressure distributions for both cases
are compared with experimental results in Fig. 21(a) and Fig. 21(b). As before, a very good match between
the simulations and experiments is observed. For the flow conditions of case 10, note that there is a massive
detachment of the flow after the shock wave, which leads to the small discrepancies observed in Fig. 21(b).

E. Transonic Wing and Full Aircraft Configurations

1. ONERA M6 Wing

Case Description The ONERA M6 wing was designed in 1972 by the ONERA Aerodynamics Depart-
ment as an experimental geometry for studying three-dimensional, high Reynolds number flows with some
complex flow phenomena (transonic shocks, shock-boundary layer interaction, and separated flow, for in-
stance). It has become a classic validation case for CFD codes due to the available geometric description,
complicated flow physics, and the availability of experimental data. More specifically, it is a swept, semi-
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(a) RAE 2822 surface Cp distribution for case 9. (b) RAE 2822 surface Cp distribution for case 10.

Figure 21. Evaluation of Case 9 and Case 10 for the RAE 2822.

span wing with no twist that uses a symmetric airfoil (ONERA D sections). The aspect ratio is 3.8, and the
leading edge angle is 30.0 degrees.

In this investigation, we will compare computational results from SU2 against experimental data from
Schmitt and Charpin63 for pressure coefficient distributions at several span-wise stations of the wing. The
chosen flow conditions are from Test 2308: M∞ = 0.8395, an angle of attack 3.06 degrees, and an angle of
sideslip 0.0 degrees. These correspond to a Reynolds number of 11.72 million based on the mean aerodynamic
chord of 0.64607 m. A summary of the conditions can be found in Table 1.

M∞ 0.8395

Remac 11.72M

T∞ 273.15K

α 3.06◦

Rν̃(U) SA & SST

Table 12. ONERA M6 free-stream
conditions.

Computational Domain The unstructured, mixed-element mesh
around the ONERA M6 wing consists of 220,145 tetrahedra, 107,477
prisms, and 1,431 pyramids (329,053 total interior elements) with a
total of 96,252 nodes. A layer of prisms surrounds the wing surface
for capturing the boundary layer, and the mesh spacing near the wall
was set to achieve a y+ < 1 over the entire wing surface. A no-slip,
adiabatic condition is satisfied on the wing surface, a symmetry plane
is used to reflect the flow about the plane of the root airfoil section to
mimic the effect of the full wing planform, and a characteristic-based
condition is applied at a spherical far-field boundary. The full domain
and surface meshes for the wing geometry and symmetry plane are
shown in Fig. 22.

Numerical Methods The mean flow convective fluxes for this test case are computed with the JST
scheme. The turbulent variables for the S-A and SST models are convected using a first-order scalar upwind
method, and all viscous fluxes are calculated using the corrected average-gradient method. Implicit, local
time-stepping is used to relax the problem to a steady-state solution, and the linear system is solved at each
pseudo-time step using the iterative GMRES method with a maximum error tolerance of O(10−6). For both
the S-A and SST cases, the flow was converged five orders of magnitude in the density residual.

Results Surface pressure coefficient distributions are shown at four different span-wise stations of the
wing in Fig. 23. Overall, the computed SU2 distributions are in good agreement with the published data
from Schmitt & Charpin. There is almost no noticeable difference between the computed results using the
S-A and the SST models for this case (and with the other present numerical methods). Near the outboard
region of the wing (y/b = 0.8, 0.95), the computed values of pressure match experiment particularly well.
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(a) Full domain. (b) View of the symmetry plane and wing surface meshes.

Figure 22. View of the computational grid for the ONERA M6 case.

The computed pressures along the upper surface for y/b = 0.2 and y/b = 0.65 show some discrepancies from
the experimental values, but the pressure along the lower surface, leading edge, and the aft portion of the
wing are in good agreement. The typical lambda shock pattern on the upper surface of the wing is captured,
but the shocks could be captured more crisply with a finer mesh. However, the agreement between SU2 and
experiment is particularly impressive, as the mesh used for this case is relatively coarse (less than 100,000
nodes in total).

2. DLR-F6 Transonic Airplane

M∞ 0.75

Rec 3M , 5M

T∞ 273K

α 0◦, 0.49◦

Rν̃(U) SA & SST

Table 13. NACA 0012 free-stream
conditions.

Case Description Transonic flow over the DLR F6 aircraft (wing
body configuration) is computed with SU2 in this validation case. For
the baseline geometry and case definition, we have chosen the DLR
F6 configuration without a fairing that was used in the 3rd CFD Drag
Prediction Workshop (Mach number 0.75 and Reynolds number 5E6).
In order to match the experiment lift coefficient of 0.498, a zero angle
of attack was required in the numerical settings. It is important to re-
mark that the wind tunnel experiments were performed at a Reynolds
number of 3E6 and an angle of attack of 0.49 degrees.

A detailed description of the geometry and experimental results
can be found in the documentation produced by the 3rd CFD Drag
Prediction Workshopb. The original reference for the baseline DLR
F6 geometry is by Brodersen and Stürmer.64 The S-A and SST turbulence models are used for this test
case, and the free-stream conditions are shown in Table 2.

Computational Domain The mesh used in this study is a hybrid-element grid (see Fig. 24) composed
of 8,773,810 total elements and 3,059,189 nodes (generated with the ANSYS ICEM CFD Mesh Generation
Software). The mesh is composed of tetrahedra, prisms, and pyramids around a surface that has been
discretized using triangles. The far-field boundary is located approximately 20 body lengths away from the
aircraft with a suitable spacing in the boundary layer to allow for a y+ ≈ 1.

Numerical Methods A JST centered spatial discretization has been used to calculate convective fluxes.
Turbulent variables for the S-A and SST models are convected using a first-order scalar upwind method, and

bhttp://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/
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(a) y/b = 0.2. (b) y/b = 0.65.

(c) y/b = 0.8. (d) y/b = 0.95.

Figure 23. Cp distribution comparison between the experimental results of Schmitt and Charpin and SU2 at
different sections along the span of the wing.
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(a) Full domain. (b) Aircraft geometry and surface mesh.

Figure 24. DLR F6 computational grids.

the viscous fluxes are calculated using the corrected average-gradient method. Implicit, local time-stepping is
used to converge the problem to the steady-state solution, and the linear system is solved using the iterative
GMRES method with a maximum error tolerance of O(10−6).

Results A complete set of results has been obtained for this configuration (not all are shown in this
paper). In this particular study, four representative sections of the wing (y/b = 0.150, 0.331, 0.409, 0.844)
are presented in Fig. 25. To obtain these results, two different sets of conditions have been used:

• First, the wind tunnel lift coefficient CL = 0.5 was matched at Reynolds number 5E6. In this case, the
results are compared with those obtained by the code Tau (DLR) with very good agreement. It is also
important to highlight the small differences introduced by the turbulence models (more important in
the inboard section close to a well-known recirculation region in the wing-fuselage intersection).

• Second, the conditions from the wind tunnel experiment were matched. In this case, the angle of
attack is set to 0.49 degrees with a Reynolds number of 3E6. With this particular setting, despite the
fact that the lift coefficient is over-predicted (CL = 0.53), we obtain very good agreement with the
experimental data, except near the most outboard section of the wing where there is a mismatch in
the shock wave location (probably due to the low resolution of the numerical grid).

This complex, full aircraft configuration is a perfect example for demonstrating the adjoint RANS solver
that is integrated in SU2 for obtaining the sensitivities needed for shape design. After solving the RANS
equations, the direct flow solution and the same computational mesh can be immediately reused as inputs
for solving the adjoint RANS equations in the solver (while taking advantage of similar numerical methods
and the same code structure). While using less computational time and memory resources than in the direct
problem with the present continuous adjoint formulation, it is possible to evaluate the surface sensitivity
after solving the RANS adjoint equations for a particular objective function.

The pressure distribution on the upper and lower surfaces and the surface sensitivity (for the drag, lift,
and pitching moment coefficients) are shown in Fig. 26. This sensitivity information reveals the impact of a
particular geometrical change on the selected objective function and can be used for gradient-based shape
optimization or directly by the designer to manually improve the shape of the aircraft. The DLR F6 case
presented here is meant to serve as an example of how SU2 can be used both to analyze the performance
of complex geometries using the RANS equations and to efficiently compute the sensitivities needed by a
designer for a large-scale engineering problem.
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(a) Cp distribution at wing section y/b = 0.150. (b) Cp distribution at wing section y/b = 0.331.

(c) Cp distribution at wing section y/b = 0.409. (d) Cp distribution at wing section y/b = 0.844.

Figure 25. Cp distributions at CL = 0.5, RN = 5E6 (workshop), and AoA = 0.49, RN = 3E6 (wind tunnel
experiment).
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(a) Cp contours. (b) CL surface sensitivity contours.

(c) CD surface sensitivity contours. (d) CMy surface sensitivity contours.

Figure 26. Pressure and surface sensitivity contours on the DLR F6 aircraft geometry (lower and upper
surfaces).
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IV. Conclusions

In this work, we have completed a comprehensive V & V process for the RANS flow solver portion of the
SU2 software suite, using both the S-A and SST turbulence models. The validation test cases span a range
of flow regimes pertinent to applications of broad interest in both aerospace and mechanical engineering
fields. For the selected test cases, SU2 solutions are shown to be in excellent agreement with both the
available experimental data and numerical simulation results from other well-established computational
tools developed at NASA. Based on our results, we have established that SU2 provides accurate, high-fidelity
computational simulations for the analysis of complex configurations on unstructured meshes.

Additionally, the flexibility of the class hierarchy in the SU2 framework permits the straight-forward
implementation of new turbulence models and numerical discretization methods. The code structure enables
rapid implementations of new models and makes SU2 an ideal test-bed for scientists in turbulence modeling
research fields. Moreover, as the framework is tailor-made for coupled analyses, SU2 dramatically lowers the
implementation barrier for tackling aeroelastic, aeroacoustic, and aerothermodynamic problems of critical
interest to the aerospace community.

Lastly, SU2 is uniquely connected to a global community of researchers and developers in the field of
scientific computing for engineering applications. The release of the software under the GNU LGPL (v2.1)
has enabled engineers and scientists from around the world to work from a common code-base and pro-
vides worldwide access to industry-standard analysis tools. Advances in CFD, shape design, and numerical
methods can be rapidly disseminated to a wide, knowledgeable user base in an established, online community.
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