SU² Design Exploration
NACA 0012

SU² Release Version 2.0 Workshop
Stanford University
Tuesday, January 15th, 2013

Trent Lukaczyk
Department of Aeronautics & Astronautics
Stanford University
Indirect Design Approaches

- Example: Response Surface Modeling
- Two Hicks-Henne Bump Functions
- 10x10 grid of simulations
Indirect Design Approaches

- Example: Response Surface Modeling
- Two Hicks-Henne Bump Functions
- 10x10 grid of simulations
Task-Based Design Exploration

Project

Root folder of data
Baseline config and mesh

Config Change

Job 0
Contains analysis tasks
Output meshes, restarts

Job 1

Job 2

Config Change

Config Change

* Only design variables for now

Task
Deformation

Task
Direct Solution

Task
Drag Adjoint

Task
Lift Adjoint

Jan 15th, 2013

SU2
Release
Version 2.0
Workshop
NACA0012 Test Case

- NACA 0012 Test Case
- One Hicks-Henne Bump Function
- 11 Evaluations in $X \in [-0.02, 0.02]$
% ------------------------- EVALUATE PROJECT DEFINITION -------------------------%

% List of tasks to complete
TASKS= DEFORM, DIRECT, CONT_ADJOINT

% Number of partitions (0 for Serial)
NUMBER_PART= 2

% List of design variables (Design variables are separated by semicolons)
% - HICKS_HENNE: (1, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc)
DEFINITION_DV= (1, 1.0 | airfoil | 0, 0.05); (1, 1.0 | airfoil | 0, 0.10); (...)

% Gradients to calculate
GRADIENTS= LIFT, DRAG, MOMENT_Z

% Console output (VERBOSE, CONCISE, QUIET)
CONSOLE= CONCISE
% ------------------------- EVALUATE PROJECT DEFINITION -------------------------%

% List of tasks to complete
TASKS= DEFORM, DIRECT, CONT_ADJOINT

% Number of partitions (0 for Serial)
NUMBER_PART= 2

% List of design variables (Design variables are separated by semicolons)
% - HICKS_HENNE: (1, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc)
DEFINITION_DV= (1, 1.0 | airfoil | 0, 0.05); (1, 1.0 | airfoil | 0, 0.10); (...)

% Gradients to calculate
GRADIENTS= LIFT, DRAG, MOMENT_Z

% Console output (VERBOSE, CONCISE, QUIET)
CONSOLE= CONCISE
config_NACA0012.cfg

% ------------------------- EVALUATE PROJECT DEFINITION ------------------------%

% List of tasks to complete
TASKS= DEFORM, DIRECT, CONT_ADJOINT

% Number of partitions (0 for Serial)
NUMBER_PART= 2

% List of design variables (Design variables are separated by semicolons)
% - HICKS_HENNE: (1, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc)
DEFINITION_DV= (1, 1.0 | airfoil | 0, 0.05); (1, 1.0 | airfoil | 0, 0.10); (...)

% Gradients to calculate
GRADIENTS= LIFT, DRAG, MOMENT_Z

% Console output (VERBOSE, CONCISE, QUIET)
CONSOLE= CONCISE
% ------------------------- EVALUATE PROJECT DEFINITION ---------------------------%

% List of tasks to complete
TASKS= DEFORM, DIRECT, CONT_ADJOINT

% Number of partitions (0 for Serial)
NUMBER_PART= 2

% List of design variables (Design variables are separated by semicolons)
% - HICKS_HENNE: (1, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc)
DEFINITION_DV= (1, 1.0 | airfoil | 0, 0.05); (1, 1.0 | airfoil | 0, 0.10); (...)

% Gradients to calculate
GRADIENTS= LIFT, DRAG, MOMENT_Z

% Console output (VERBOSE, CONCISE, QUIET)
CONSOLE= CONCISE
% EVALUATE PROJECT DEFINITION

List of tasks to complete

```
TASKS= DEFORM, DIRECT, CONT_ADJOINT
```

Number of partitions (0 for Serial)

```
NUMBER_PART= 2
```

List of design variables (Design variables are separated by semicolons)

```
% - HICKS_HENNE: ( 1, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc )
DEFINITION_DV= ( 1, 1.0 | airfoil | 0, 0.05 ); ( 1, 1.0 | airfoil | 0, 0.10 ); (...)
```

Gradients to calculate

```
GRADIENTS= LIFT, DRAG, MOMENT_Z
```

Console output (VERBOSE, CONCISE, QUIET)

```
CONSOLE= CONCISE
```
% EVALUATE PROJECT DEFINITION

% List of tasks to complete
TASKS= DEFORM, DIRECT, CONT_ADJOINT

% Number of partitions (0 for Serial)
NUMBER_PART= 2

% List of design variables (Design variables are separated by semicolons)
% - HICKS_HENNE: (1, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc)
DEFINITION_DV= (1, 1.0 | airfoil | 0, 0.05); (1, 1.0 | airfoil | 0, 0.10); (...)

% Gradients to calculate
GRADIENTS= LIFT, DRAG, MOMENT_Z

% Console output (VERBOSE, CONCISE, QUIET)
CONSOLE= CONCISE
Setup

(...)

design variable values

DV_vals = numpy.linspace(-0.02, 0.02, 11)

setup config changes

config_delta = []

for X in DV_vals:
 DV_X = numpy.zeros(n_DV)
 DV_X[i_DV] = X
 config_delta.append({'VARIABLES':DV_X})

initialize project

The_Project = Project(config_name = config_filename,
 design_name = design_filename)
Setup

(…)

design variable values

```python
DV_vals = numpy.linspace(-0.02, 0.02, 11)
```

setup config changes

```python
config_delta = []
for X in DV_vals:
    DV_X = numpy.zeros(n_DV)
    DV_X[i_DV] = X
    config_delta.append( {'VARIABLES':DV_X} )
```

initialize project

```python
The_Project = Project( config_name = config_filename, design_name = design_filename )
```
Setup

(…)

design variable values

\[DV_vals = \text{numpy.linspace}(-0.02, 0.02, 11) \]

setup config changes

\[\text{config_delta} = [] \]

for \(X \) in \(DV_vals \):

\[DV_X = \text{numpy.zeros}(n_DV) \]

\[DV_X[i_DV] = X \]

\[\text{config_delta}.\text{append}(\{'\text{VARIABLES'}:DV_X\}) \]

initialize project

\[\text{The} _\text{Project} = \text{Project}(\text{config_name} = \text{config_filename}, \]

\[\text{design_name} = \text{design_filename}) \]
Setup

(...)

design variable values
DV_vals = numpy.linspace(-0.02, 0.02, 11)

setup config changes
config_delta = []
for X in DV_vals:
 DV_X = numpy.zeros(n_DV)
 DV_X[i_DV] = X
 config_delta.append({'VARIABLES':DV_X})

initialize project
The_Project = Project(config_name = config_filename,
 design_name = design_filename)

run_project.py
Run Project

evaluate project
design_new,_,_ = The_Project.evaluate(config_delta)

save project
libSU2.save_data(project_filename,The_Project)

save data
already done by The_Project.evaluate()