Interactive Python Exercise
Modifying the Python Scripts

SU2 Workshop Feb 3rd 2017
Heather Kline
Python Scripts

- Source code location: SU2/SU2_PY/
- Installed location: SU2/bin/
- Dependencies: SU2/bin/SU2/ (source: SU2/SU2_PY/SU2/)

To run a local version:
$./python_script.py

To run version installed in the bin/ directory:
$ python_script.py
#!/usr/bin/env python

file Compute_Mpolar.py
brief Python script for performing polar sweep of Mach number.
author H. Kline (E. Arad compute_polar script)
version 5.0.0 "Raven"

SU2 Lead Developers: Dr. Francisco Palacios (Francisco.D.Palacios@boeing.com).
Dr. Thomas D. Economou (economou@stanford.edu).
Prof. Piero Colonna's group at Delft University of Technology.
Prof. Nicolas R. Gauger's group at Kaiserslautern University of Technology.
Prof. Alberto Guardone's group at Polytechnic University of Milan.
Prof. Rafael Palacios' group at Imperial College London.

Copyright (C) 2012-2017 SU2, the open-source CFD code.

SU2 is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

SU2 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with SU2. If not, see <http://www.gnu.org/licenses/>.

imports
import numpy as np
import matplotlib.pyplot as plt
from optparse import OptionParser
import os, sys, shutil, copy, os.path
sys.path.append(os.environ['SU2_RUN'])
import SU2

def main():
if __name__ == "__main__":
 main()
wget su2.stanford.edu/documents/WorkshopFeb2017/compute_Mpolar.py

Starts python environment

Import python packages and functions defined in other files

'import SU2' loads numerous functions defined in SU2_PY/SU2/

Execute 'main()' when this script is called from terminal
wget su2.stanford.edu/documents/WorkshopFeb2017/compute_Mpolar.py

```python
#!/usr/bin/env python

# file Compute_Mpolar.py
# brief Python script for performing polar sweep of Mach number.
# author H. Kline (E. Arad compute_polar script)
# version 5.0.0 "Raven"

# SU2 Lead Developers: Dr. Francisco Palacios (Francisco.D.Palacios@boeing.com).
# Dr. Thomas D. Economon (economon@stanford.edu).

# Copyright (C) 2012-2017 SU2, the open-source CFD code.

# SU2 is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

# SU2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

# You should have received a copy of the GNU Lesser General Public License along with SU2. If not, see <http://www.gnu.org/licenses/>.

# imports
import numpy as np
import matplotlib.pyplot as plt
from optparse import OptionParser
import os, sys, shutil, copy, os.path
sys.path.append(os.environ['SU2_RUN'])
import SU2

def main():
    if __name__ == "__main__":
        main()
```
```python
import os
import numpy as np
import matplotlib.pyplot as plt
from SU2 import SU2

def main():
    parser = OptionParser()
    parser.add_option("-f", "--file", dest="filename",
                    help="read config from FILE", metavar="FILE")
    parser.add_option("-p", "--partitions", default=2,
                    help="number of PARTITIONS", metavar="PARTITIONS")
    parser.add_option("-i", "--iterations", dest="iterations", default=99999,
                    help="number of ITERATIONS", metavar="ITERATIONS")
    (options, args) = parser.parse_args()
    options.partitions = int(options.partitions)
    options.iterations = int(options.iterations)

    # load config, start state
    config = SU2.io.Config(options.filename)
    state = SU2.io.State()

    # find solution files if they exist
    state.find_files(config)

    # prepare config
    config.NUMBER_PART = options.partitions
    config.MAX_ITER = options.iterations

    # Initialize results arrays
    nMach = 5
    MachList = np.linspace(0.5, 0.6, nMach)
    LiftList = []
    DragList = []

    # Output file
    outFile = 'Polar M' + str(MachList[0]) + '.dat'
    f = open(outFile, 'w')
    f.write('% Mach, C_L, C_D, C_D0n')

    # Iterate on Mach number
    for MachNumber in MachList:
        # local config and state
        config = copy.deepcopy(config)
        state = copy.deepcopy(state)

        # set config options
        config.MACH_NUMBER = MachNumber
        cosName = 'DIRECT_M' + str(MachNumber)

        # run su2
        drag = SU2.eval.funct('DRAG', config, state)
        lift = SU2.eval.funct('LIFT', config, state)
        LiftList.append(lift)
        DragList.append(drag)

        output = str(MachNumber) + '. ' + str(lift) + ' ' + str(drag) + ' \n'
        f.write(output)

    # Store result in a subdirectory
    if os.path.isdir(cosName): 
        os.system('rm -R ' + cosName)
        command = 'mkdir ' + cosName
        os.system(command)

    # Close open file
    f.close()

# plotting
plt.figure()
plt.plot(MachList, LiftList)
plt.xlabel('Mach')
plt.ylabel('Lift Coefficient')
plt.show()

if __name__ == '__main__':
    main()
```

Define and parse command line options (-f filename, etc)
Initialize python objects that run SU2, modify options.

To modify config options from the python script:

```python
config.EXT_ITER = options.iterations
```
Set up range of Mach numbers, open the output file, and start a for loop.
Copy the config and state objects using `copy.deepcopy` and set the Mach number.
Evaluate lift and drag using `SU2.eval.func('DRAG', konfig, ztate)`

Note that only the first `eval` runs `SU2_CFD`, after that the output values are stored in the state object.
Store results, close output file, and plot results
Run, and modify compute_Mpolar.py

- What do we need to change to plot an additional output (ie, Cl/Cd, Cmz)?
Mini-project: N minutes to modify a python script

- Goal: execute a problem that requires several CFD simulations (10-20).
- Use the Quickstart input files
- Suggested mini-projects:
 - Sweep through angle of attack and output the lift coefficients.
 - Estimate the standard deviation of lift with respect to an input distribution of Mach number.
- Resources:
 Plotting with python: http://matplotlib.org/faq/howto_faq.html
 Numpy (arrays, random numbers, etc): https://docs.scipy.org/doc/numpy/reference/index.html
 File I/O with Python: https://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files
 Output function names: SU2_PY/SU2/io/tools.py → get_headerMap()