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How do we get there? Scalable development practices.  

• How do we avoid code conflicts? 
• Branching model in git for decentralized, parallel development. 

• How does one contribute code contributions to the repo?  
• Pull requests through GitHub.  

• Quality assurance?  
• Automatic, pre-merge regression testing (Travis CI) and code reviews.  

• How do we minimize the overhead of software development in a research 
environment? 
• All of the above + streamlined release process at regular, frequent 

intervals.

It’s bright where we’re headed.



source: http://xkcd.com/1597/

1. Decentralized development in git
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1. Each new feature/capability should 
have its own branch.  Note: internal 
devs should create branches directly 
in SU2 repo (not forks) to increase 
collaboration. 

2. All branches operate in parallel, with 
“owners” updating their feature 
branches from develop regularly, i.e., 
‘$ git merge develop’. 

3. Once ready, owners prepare a pull 
request for feature. Code is reviewed, 
and after tests pass, merged into 
develop. Remove feature branch. 

4. At regular intervals, develop is staged 
for a release. Once ready, it is pushed 
to master, tagged, and released. 
Note: master is always stable.
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2. Submitting code to the repository

• Submit contributions through 
pull requests on GitHub. 

• Pull requests should target the 
develop branch. 

• Both internal (internal 
branches) and external 
developers (external forks). 

• Reasons for pull request 
method: 

• Keeps team informed 
(emails, PR description, 
commit logs). 

• Allows for code review 
(GitHub). 

• Automatic, pre-merge 
testing (Travis CI).



3. Continuous integration

• Pull requests are automatically tested against our suite of regression tests… we know upfront if 
there are problems and won’t merge! 

• New features should also include new tests to ensure that the functionality is protected long-term. 
• The develop branch is frequently tested automatically, but folks can activate for their own 

branches while they develop (and change notification to just their own email).



4. Releases
• We put out releases at frequent intervals: 
 
SU2 vX.Y.Z where X = major, Y = minor, Z = maintenance 

• Released through GitHub (tags) and binaries are created 
and posted for download on su2.stanford.edu. 

• Release schedule is dictated by a combination of features, 
events (e.g., AIAA for impact), and maintenance needs. 

• Feature “hiding” is a practice we use to stage 
developments and get some early testing for features that 
aren’t ready for public consumption.



4. Releases


