
Introduction to GitHub and
SU2 Development Practices

Dr. Thomas D. Economon
Department of Aeronautics & Astronautics

Stanford University

S U 2 W I N T E R W O R K S H O P

F E B R U A R Y 3 R D , 2 0 1 7

How do we get there? Scalable development practices.  

• How do we avoid code conflicts?
• Branching model in git for decentralized, parallel development. 

• How does one contribute code contributions to the repo?
• Pull requests through GitHub.  

• Quality assurance?
• Automatic, pre-merge regression testing (Travis CI) and code reviews.  

• How do we minimize the overhead of software development in a research
environment?
• All of the above + streamlined release process at regular, frequent

intervals.

It’s bright where we’re headed.

source: http://xkcd.com/1597/

1. Decentralized development in git

Ti
m
e

release
branches

master

develop hotfixes
feature

branches

Feature
for

future
release

Tag
1.0

Major
feature for

next
release

From this point
on, “next release”

means the
release after 1.0

Severe bug
fixed for

production:
hotfix 0.2

Bugfixes from
rel. branch

may be
continuously
merged back
into develop

Tag
0.1

Tag
0.2

Incorporate
bugfix in
develop

Only
bugfixes!

Start of
release

branch for
1.0

Author: Vincent Driessen
Original blog post: http://nvie.com/archives/323
License: Creative Commons

1. Each new feature/capability should
have its own branch. Note: internal
devs should create branches directly
in SU2 repo (not forks) to increase
collaboration.

2. All branches operate in parallel, with
“owners” updating their feature
branches from develop regularly, i.e.,
‘$ git merge develop’.

3. Once ready, owners prepare a pull
request for feature. Code is reviewed,
and after tests pass, merged into
develop. Remove feature branch.

4. At regular intervals, develop is staged
for a release. Once ready, it is pushed
to master, tagged, and released.
Note: master is always stable.

1. Decentralized development in git

2. Submitting code to the repository

• Submit contributions through
pull requests on GitHub.

• Pull requests should target the
develop branch.

• Both internal (internal
branches) and external
developers (external forks).

• Reasons for pull request
method:

• Keeps team informed
(emails, PR description,
commit logs).

• Allows for code review
(GitHub).

• Automatic, pre-merge
testing (Travis CI).

3. Continuous integration

• Pull requests are automatically tested against our suite of regression tests… we know upfront if
there are problems and won’t merge!

• New features should also include new tests to ensure that the functionality is protected long-term.
• The develop branch is frequently tested automatically, but folks can activate for their own

branches while they develop (and change notification to just their own email).

4. Releases
• We put out releases at frequent intervals: 
 
SU2 vX.Y.Z where X = major, Y = minor, Z = maintenance

• Released through GitHub (tags) and binaries are created
and posted for download on su2.stanford.edu.

• Release schedule is dictated by a combination of features,
events (e.g., AIAA for impact), and maintenance needs.

• Feature “hiding” is a practice we use to stage
developments and get some early testing for features that
aren’t ready for public consumption.

4. Releases

