
Current Developments and Applications related to the Discrete Adjoint
Solver in SU2

Tim Albring, Max Sagebaum, Ole Burghardt,

Lisa Kusch, Nicolas R. Gauger

Chair for Scientific Computing
TU Kaiserslautern

December 18, 2017

1 Algorithmic Differentiation in SU2
Code Differentiation Package
Message Differentiation Package - New!

2 The Discrete Adjoint Method in SU2

3 Applications

Albring et al. Current Developments related to the Discrete Adjoint Solver 2/ 21

Basics of Algorithmic Differentiation (AD)

AD exploits the fact that any computer program that evaluates a function
z = f (x) is merely a sequence of statements (expressions):

z = f (x) = hn(hn−1(. . . h1(x)))

In the Forward Mode of AD we traverse the chain rule from right to left (How
does an infinitely small change in the input values affect the output?):

ż :=
df

dx
· ẋ =

dhn
dhn−1

· dhn−1

dhn−2
. . .

dh1

dx
· ẋ

For the Reverse Mode of AD the chain rule is applied from left to right (How
sensitive are the output values to a change in the input values?):

x̄ :=

(
df

dx

)T

· z̄ =

(
dh1

dx

)T

·
(
dh2

dh1

)T

. . .

(
dhn
dhn−1

)T

· z̄

Derivatives of expressions can be efficiently evaluated using the Expression
Template technique.

Albring et al. Current Developments related to the Discrete Adjoint Solver 3/ 21

Expression Templates in CoDi

operator*

cosx 2

x 1

cos(x1)x2

cos(x1)x2

x1

Computational graph for the expression
h1 = cos(x1)x2.

Each statement consists of a
sequence of elementary
operations (+, ∗, sin, cos etc.)
that can be easily
differentiated.

Idea: create a internal
representation of each expression
at compile-time.

Overload each operation to
return an object representing
this operation and its arguments.

Expression object can be
traversed at run-time to
accumulate the gradients.

Albring et al. Current Developments related to the Discrete Adjoint Solver 4/ 21

Expression Templates in CoDi

operator*

cosx 2

x 1

Multiply<su2double,

Cos<adouble>>

Cos<su2double>su2double

su2double

Compile-time representation of types for the
expression h1 = cos(x1)x2.

Each statement consists of a
sequence of elementary
operations (+, ∗, sin, cos etc.)
that can be easily
differentiated.

Idea: create a internal
representation of each expression
at compile-time.

Overload each operation to
return an object representing
this operation and its arguments.

Expression object can be
traversed at run-time to
accumulate the gradients.

Albring et al. Current Developments related to the Discrete Adjoint Solver 4/ 21

Expression Templates in CoDi

operator*

cosx 2

x 1

Add to ḣ1

Add to ḣ1

x2cos(x1)

− sin(x1)x2

− sin(x1)x2ẋ1

cos(x1)ẋ2

Run-time traversal for the expression
h1 = cos(x1)x2.

Each statement consists of a
sequence of elementary
operations (+, ∗, sin, cos etc.)
that can be easily
differentiated.

Idea: create a internal
representation of each expression
at compile-time.

Overload each operation to
return an object representing
this operation and its arguments.

Expression object can be
traversed at run-time to
accumulate the gradients.

For the Forward mode the gradients are immediately constructed:

ḣ1 =
∂h1

∂x1
ẋ1 +

∂h1

∂x2
ẋ2 = − sin(x1)x2ẋ1 + cos(x1)ẋ2

Albring et al. Current Developments related to the Discrete Adjoint Solver 4/ 21

Expression Templates in CoDi

operator*

cosx 2

x 1

Store

Store

x2cos(x1)

− sin(x1)x2

Run-time traversal for the expression
h1 = cos(x1)x2.

Each statement consists of a
sequence of elementary
operations (+, ∗, sin, cos etc.)
that can be easily
differentiated.

Idea: create a internal
representation of each expression
at compile-time.

Overload each operation to
return an object representing
this operation and its arguments.

Expression object can be
traversed at run-time to
accumulate the gradients.

Gradients are accumulated in a second (reverse) sweep using stored information:

x̄1 = x̄1 +
∂h1

∂x1
h̄1 = x̄1 − sin(x1)x2h̄1

x̄2 = x̄2 +
∂h1

∂x2
h̄1 = x̄2 + cos(x1)h̄1

Albring et al. Current Developments related to the Discrete Adjoint Solver 4/ 21

Expressions and Active Real Definition using CRTP
codi::Expression

<Real, A>

codi::Expression <Real,

ActiveReal <Real, Tape>>

codi::Expression

<Real, Cos<Real, A>>

codi::ActiveReal <Real, Tape> codi::Cos <Real, A>

Instantiation

Inheritance

Curiously Recurring Template Pattern (CRTP) enables static polymorphism. Each
of the derived expressions implements a calcGradient() routine that computes its
(partial) derivative and calls the calcGradient() routine of its arguments.

template <typename Real , c l a s s A>
c l a s s E x p r e s s i o n{

i n l i n e const A& c a s t () const {
r e t u r n s t a t i c c a s t<const A&>(∗t h i s) ;

}
i n l i n e v o i d c a l c G r a d i e n t (Rea l& g r a d i e n t ,

const Rea l& m u l t i p l i e r) const {
c a s t () . c a l c G r a d i e n t (g r a d i e n t , m u l t i p l i e r) ;

}
}

template<typename Real , c l a s s A>
s t r u c t Cos :
p u b l i c E x p r e s s i o n<Real , Cos<Real , A>>{

const &A a ;
i n l i n e v o i d c a l c G r a d i e n t (Rea l& g r a d i e n t ,

const Rea l& m u l t i p l i e r) const {
a . c a l c G r a d i e n t (g r a d i e n t ,

−s i n (a . g e t V a l u e ())∗ m u l t i p l i e r) ;
}
}

The overridden function in the derived class is selected at compile time.

Albring et al. Current Developments related to the Discrete Adjoint Solver 5/ 21

(Simplified) Tape Interface Definition
codi::TapeInterface

<Real, GradientData>

codi::TapeInterface

<Real, IndexType>

codi::TapeInterface

<Real, Real>

codi::ForwardEvaluation

<Real>
codi::ReverseTapeInterface

<Real, IndexType>

Instantiation

Inheritance

Common abstract interface for forward and reverse mode. It defines functions to
signal the tape implementation when

an ActiveReal is constructed or destroyed

the assignment operator (=) of the ActiveReal with active RHS (Expression)
is called (triggers calcGradient() of this expression)

an ActiveReal is input of an expression (calcGradient() of ActiveReal,
terminates the gradient computation of this expression)

su2double is actually (by default) one of the following types:
Reverse mode: ActiveReal<JacobiTape<ChunkTapeTypes<double, LinearIndexHandler<int>>>>

Forward mode: ActiveReal<ForwardEvaluation<double>>

Albring et al. Current Developments related to the Discrete Adjoint Solver 6/ 21

CoDiPack - Code Differentiation Package for C/C++

Why yet another AD tool ?

Compile-time construction of statement objects using Expression Templates
→ yields high performance and possibility to analyze source code

Flexible template-based implementation

Distinct interface between the Expression Template implementation and the
tape implementation
→ allows different taping methods (primal value taping, Jacobi taping,
memory handling using chunks, preallocated memory etc)

Available as Open-source under GPL3 on Github
(https://github.com/SciCompKL/CoDiPack)

Extensive documentation and tutorials (more will be added in the future)

Automatic self-testing (also on TravisCI)

Header-only

Albring et al. Current Developments related to the Discrete Adjoint Solver 7/ 21

MPI and AD: First Challenge

There exists a huge variety of AD tools, e.g.

Operator Overloading AD

CoDiPack

ADOL-c

dco/c++

Adept

FADBAD

Sacado

etc.

Source Transformation AD

Tapenade

OpenAD

ADIC

etc.

All of them have different approaches on how to store data.

Albring et al. Current Developments related to the Discrete Adjoint Solver 8/ 21

MPI and AD: Second Challenge

The MPI standard is comprehensive ...

Functions

Bsend, Ibsend, Imrecv, Irecv, Irsend, Isend, Issend, Mrecv, Recv, Rsend, Send,
Sendrecv, Ssend, Allgather, Allgatherv, Allreduce global, Alltoall, Alltoallv,
Bcast wrap, Gather, Gatherv, Iallgather, Iallgatherv, Iallreduce global, Ialltoall,
Ialltoallv, Ibcast wrap, Igather, Igatherv, Ireduce global, Iscatter, Iscatterv,
Reduce global, Scatter, Scatterv, etc.

Standards

MPI 1.*: 129 Functions

MPI 2.*: 183 functions

MPI 3.*: 109 functions

Total: 421 functions

Albring et al. Current Developments related to the Discrete Adjoint Solver 9/ 21

MPI and AD: Second Challenge cont’d

Concepts (Overview)

Send buffer

Recv buffer

Inplace buffers

Communicators (intra and inter)

Collective (multiple ranks)

Variable size per rank

Asynchronous

Reduction operation

Custom data types

Message fitting

Preinitialization

All of these concepts must be handled to work with AD datatypes.

Albring et al. Current Developments related to the Discrete Adjoint Solver 10/ 21

Reverse Mode of AD and MPI
Broadcast Example

Process 1
Bcast(x , P1)

Process 3
Bcast(x , P1)

Process 2
Bcast(x , P1)

Process 4
Bcast(x , P1)

x

x

x

Process 1
Recv(x̄ , P1)

Process 3
Send(x̄ , P1)

Process 2
Send(x̄ , P1)

Process 4
Send(x̄ , P1)

x̄

x̄

x̄

Albring et al. Current Developments related to the Discrete Adjoint Solver 11/ 21

Reverse Mode of AD and MPI
Broadcast Example

Process 1
Bcast(x , P1)

Process 3
Bcast(x , P1)

Process 2
Bcast(x , P1)

Process 4
Bcast(x , P1)

x

x

x

Process 1
Recv(x̄ , P1)

Process 3
Send(x̄ , P1)

Process 2
Send(x̄ , P1)

Process 4
Send(x̄ , P1)

x̄

x̄

x̄

Albring et al. Current Developments related to the Discrete Adjoint Solver 11/ 21

Message Differentiation Package

Features:

A full forward of AMPI to MPI

80% (340/421) coverage of the full MPI standard up to now
MPI 1.* 90% (117/129)
MPI 2.* 83% (153/183)
MPI 3.* 64% (70/109)

Uses a code generator to avoid duplicated code for common concepts (improves
maintainability)

Header-only library

Available as open-source on Github: https://github.com/scicompkl/medipack

What does that mean for SU2:

Integration almost finished (automatically downloaded with the
preconfigure.py script)

All MPI calls can be replaced with SU2 MPI:: wrapper calls

Future-proof: possibility to easily handle e.g. higher-order derivatives and/or
new MPI communication concepts

Albring et al. Current Developments related to the Discrete Adjoint Solver 12/ 21

Abstract Fixed-Point Formulation for Multi-Disciplinary Design

– β ∈ Rp: design vector

– U ∈ Rn: state vector

– X ∈ Rm: computational mesh

– M(β) = X : mesh deformation equation

– J(U,X): objective function

– R(U,X) = 0: discretized state equation

Note: R or rather G contain everything∗ imple-
mented in the code.
Has been applied in SU2 so far to

Coupled problems (FSI and CHT),

Turbomachinery problems,

Aeroacoustics,

Harmonic Balance,

etc.
∗at least by default

min
β

J(U(β),X (β))

s.t. R(U(β),X (β)) = 0

M(β) = X

min
β

J(U(β),X (β))

s.t. G(U(β),X (β)) = U

M(β) = X

Assuming R(U,X) = 0 is

solved by a fixed-point iteration:

G(U∗,X) = U∗ ⇔ R(U∗,X) = 0

In case of Newton-type solver:

G(U,X) := U − P(U,X)R(U,X),

where P ≈ (∂R/∂U)−1.

Albring et al. Current Developments related to the Discrete Adjoint Solver 13/ 21

The Discrete Adjoint Solver

Using the method of Lagrangian multiplier we define the Lagrangian function as:

L(β,U,X , Ū, X̄) = J(U,X) + ŪT (G(U,X)︸ ︷︷ ︸
=:N , Shifted Lagrangian

−U) + X̄T (M(β)− X)

KKT conditions yield equations for adjoints Ū, X̄ and sensitivity vector dL/dβ:

Ū =
∂

∂U
J(U,X) +

∂

∂U
GT (U,X)Ū

=
∂

∂U
N T (U, Ū,X) Adjoint equation

X̄ =
∂

∂X
J(U,X) +

∂

∂X
GT (U,X)Ū

=
∂

∂X
N T (U, Ū,X) Mesh Adjoint equation

dL
dβ

=
d

dβ
MT (β)X̄ Design equation

Albring et al. Current Developments related to the Discrete Adjoint Solver 14/ 21

Implementation

Application of AD in a mechanical fashion to the evaluation of objective function J
directly yields gradients of the shifted Lagrangian N :

Un+1 = G(Un
,X)

W = J(Un
,X)

X̄ = ∂JT
X (Un

,X)W̄

Ūn = ∂JT
U (Un

,X)W̄

X̄ + = ∂GT
X (Un

,X)Ūn+1

Ūn + = ∂GT
U (Un

,X)Ūn+1

Reverse Mode

If W̄ ≡ 1 and Un ≡ U∗ we have

Ūn+1 ≡ ∂N T
U (U∗, Ūn,X),

X̄ ≡ ∂N T
X (U∗, Ūn,X).

Using the Expression Template approach we only need to store the gradient
information of G and J once at Un = U∗. Subsequent iterations only require a
reverse sweep (Reverse Accumulation).

Albring et al. Current Developments related to the Discrete Adjoint Solver 15/ 21

Conjugate Heat Transfer Applications

Cooler consists of around 150 pins that extend into a coolant fluid flow

Attached power electronic device (IGBT module, power loss around 600W due
to internal resistance)

All heat will be transferred through the pins – but at which temperature?

Albring et al. Current Developments related to the Discrete Adjoint Solver 16/ 21

(Primal) Simulation – for one pin only

(Steady) RANS fluid flow (water at 0.25m
s

) with coupled heat equations in both
fluid and solid zones in SU2

Re ∼ 500, Prandtl-analogy for heat conduction, no viscous heating

Heat flux at the pin’s top: 4W, pin material: aluminium

Albring et al. Current Developments related to the Discrete Adjoint Solver 17/ 21

Coupled Sensitivities

Objective function:
Temperature level at the top of
the pins (minimize to avoid
damage to power electronics!)

Adjoints:
Capture the coupling (and
turbulence!) dependence

Sensitivities:
Include the mesh deformation
derivatives

Albring et al. Current Developments related to the Discrete Adjoint Solver 18/ 21

Robust Design with Multiple Objectives

Application in SU2

uncertainty in the airfoil geometry given by a random field:
non-intrusive pseudo-spectral approach + dimension-adaptive sparse grid

steady Euler optimization test case

0.2 0.4 0.6 0.8
0

0.5

1

1.5

2
·10−2

lift coefficient

dr
ag

co
effi

ci
en
t

opt
exp(opt)

exp(robust)

Albring et al. Current Developments related to the Discrete Adjoint Solver 19/ 21

One-Shot Approach

Implementation in SU2

simultaneous iteration of state, adjoint state and design

research on additional constraints, topology optimization

0 50 100 150 200 250 300 350 400

0

0.1

Iteration

cd
||Nu||

0 100 200 300 400

−6

−4

−2

Iteration

primal residual
adjoint residual

drag coefficient (transonic Euler flow)

end compliance of cantilever beam (nonlinear
continuum mechanics)

Albring et al. Current Developments related to the Discrete Adjoint Solver 20/ 21

Summary

Discrete Adjoint Solver using AD

Easily extensible to other (coupled) solvers in SU2 (more examples are shown
in some of the next talks)

Fully parallel and future-proof implementation

High-performance (typically runtime and memory ratios of 1.0 - 2.0 and 4-6,
respectively)

Thank you for your attention!
Any questions ?

Albring et al. Current Developments related to the Discrete Adjoint Solver 21/ 21

	Algorithmic Differentiation in SU2
	Code Differentiation Package
	Message Differentiation Package - greenNew!

	The Discrete Adjoint Method in SU2
	Applications

