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Presentation Outline

* Test Problem Definition: Double Vortex Pairing

e Numerical Schemes Assessed
e 2" 3nd 3 order MUSCL schemes within SU2 Finite Volume solver
e 31 grder Discontinuous Galerkin method within SU2

* Performance Criteria
* Vortex Evolution
 Mach Number Effect
* Momentum Thickness
 Total Variation Bounded



Description of Problem: Double Vortex Pairing

(a) 1.0s b) 2.0s c) 3.0s

* Mixing layer formed by
two co-flowing streams of
water

* |nitial velocity
erturbations inflate
orming two distinct
vortices

* Vortices roll around each
other eventually merging
to form one vortical

structure

e Chosen as test problem
due to presence of fine
structures and
discontinuities

(d) 4.0s (e) 5.0s f) 6.0s




Double Vortex Pairing: Reference Solution

Reference solution obtained using in-
house code CNS3D

Structured Grid Finite Volume solver
24 to 11t order accurate MUSCL + WENO
schemes

2"d to 4t order accurate time stepping
Runge-Kutta schemes

Used in previous journal publication
investigating Double Vortex Pairing
CNS3D used extensively in past for
iLES/DNS simulations

WENO 11t on 256x256 grid using CNS3D



Double Vortex Pairing: 64x64 grid, M = 0.2
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Settings (kept constant throughout):

* Classical RK4 Explicit Time Stepping

* Unsteady CFL=0.3

* Riemann Solver: HLLC

e MUSCL 2" order uses the Venkatakrishnan Limiter
e MUSCL 3™ order uses the Drikakis-Zoltak Limiter

* Passive Scalar Contour Lines: PS =0.25,0.5,0.75

* Reynolds Number = 1600

FV-M2-LMC FV-M3-LMC

Nomenclature:

* FV = Finite Volume

e M2 = MUSCL 2" order

e M3 =MUSCL 3" order

* LMC = Low Mach Correction
* M = Mach Number



Double Vortex Pairing: 64x64 grid, M=0.02

Nomenclature:
* FV = Finite Volume

/ﬁ e M2 = MUSCL 2" order
\ e M3 =MUSCL 3" order
* LMC = Low Mach Correction
* k= Limiter Coefficient
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Double Vortex Pairing: 256x256 grid, M=0.2




Double Vortex Pairing: 256x256 grid, M=0.02

FV-M2 FV-M2 + LM



Double Vortex Pairing: Momentum Thickness
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Discontinuous Galerkin 3 Qrder

(c) M =0.02, 64x64

(b) M = 0.2, 128x128

(d) M = 0.02, 128x128



Double Vortex Pairing: Momentum Thickness
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3" order Discontinuous Galerkin - TVB issues on 64x64 grid

(a) 3@ order DG, M =0.2 (b) 11th order WENO-FV, M = 0.2

(c) 3" order DG, M = 0.02 (d) 11 order WENO-FV, M = 0.02



3" order Discontinuous Galerkin - TVB issues on 128x128 grid
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(b) 11th order WENO-FV, M = 0.2
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(c) 3" order DG, M = 0.02 (d) 11th order WENO-FV, M = 0.02



Conclusions

* Addition of LMC greatly improved results of the FV within SU2.

 3rd order accurate DG scheme produced results with sharper resolution than its
FV counterparts.

* The 3" order DG scheme captures the non-linear behavior of the mixing layer, as
well as converges to a final momentum thickness agreeable with the FV solver.

34 order DG scheme contained regions of flow with over/undershoots when
compared to 11t order WENO scheme.



