Implementation and Assessment of High-Order Methods in the Framework of SU2

Presenters: K. Singh, D. Drikakis, M. Frank, I. Kokkinakis

Presentation Outline

- Test Problem Definition: Double Vortex Pairing
- Numerical Schemes Assessed
 - 2nd and 3rd order MUSCL schemes within SU2 Finite Volume solver
 - 3rd order Discontinuous Galerkin method within SU2
- Performance Criteria
 - Vortex Evolution
 - Mach Number Effect
 - Momentum Thickness
 - Total Variation Bounded

Description of Problem: Double Vortex Pairing

(d) 4.0s

- Mixing layer formed by two co-flowing streams of water
- Initial velocity perturbations inflate forming two distinct vortices
- Vortices roll around each other eventually merging to form one vortical structure
- Chosen as test problem due to presence of fine structures and discontinuities

(e) 5.0s

(f) 6.0s

Double Vortex Pairing: Reference Solution

- Reference solution obtained using inhouse code CNS3D
- Structured Grid Finite Volume solver
- 2nd to 11th order accurate MUSCL + WENO schemes
- 2nd to 4th order accurate time stepping Runge-Kutta schemes
- Used in previous journal publication investigating Double Vortex Pairing
- CNS3D used extensively in past for iLES/DNS simulations

WENO 11th on 256x256 grid using CNS3D

Double Vortex Pairing: 64x64 grid, M = 0.2

FV-M2

FV-M3

Settings (kept constant throughout):

- Classical RK4 Explicit Time Stepping
- Unsteady CFL = 0.3
- Riemann Solver: HLLC
- MUSCL 2nd order uses the Venkatakrishnan Limiter
- MUSCL 3rd order uses the Drikakis-Zoltak Limiter
- Passive Scalar Contour Lines: PS =0.25,0.5,0.75
- Reynolds Number = 1600

FV-M3-LMC

FV-M2-LMC

Nomenclature:

- FV = Finite Volume
- M2 = MUSCL 2nd order
- M3 = MUSCL 3rd order
- LMC = Low Mach Correction
- M = Mach Number

Double Vortex Pairing: 64x64 grid, M=0.02

FV-M2, k = 0.0

FV-M2, k = 1/3

FV-M2-LMC

FV-M3-LMC

Nomenclature:

- FV = Finite Volume
- M2 = MUSCL 2nd order
- M3 = MUSCL 3rd order
- LMC = Low Mach Correction
- k = Limiter Coefficient

Double Vortex Pairing: 256x256 grid, M=0.2

FV-M2

FV-M2-LMC

FV-M3

Double Vortex Pairing: 256x256 grid, M=0.02

FV-M2

FV-M2 + LM

Double Vortex Pairing: Momentum Thickness

Discontinuous Galerkin 3rd Order

(a) M = 0.2, 64x64

(b) M = 0.2, 128x128

Double Vortex Pairing: Momentum Thickness

3rd order Discontinuous Galerkin - TVB issues on 64x64 grid

(a) 3^{rd} order DG, M = 0.2

(c) 3^{rd} order DG, M = 0.02

(b) 11th order WENO-FV, M = 0.2

(d) 11^{th} order WENO-FV, M = 0.02

3rd order Discontinuous Galerkin - TVB issues on 128x128 grid

(a) 3^{rd} order DG, M = 0.2

(c) 3^{rd} order DG, M = 0.02

(b) 11^{th} order WENO-FV, M = 0.2

(d) 11^{th} order WENO-FV, M = 0.02

Conclusions

- Addition of LMC greatly improved results of the FV within SU2.
- 3rd order accurate DG scheme produced results with sharper resolution than its FV counterparts.
- The 3rd order DG scheme captures the non-linear behavior of the mixing layer, as well as converges to a final momentum thickness agreeable with the FV solver.
- 3rd order DG scheme contained regions of flow with over/undershoots when compared to 11th order WENO scheme.