UPGRADES FOR PARALLEL PERFORMANCE AND LOW SPEED FLOWS WITH HEAT TRANSFER

Dr. Thomas D. Economon CR/RTC5.2-NA 2nd Annual SU2 Developers Meeting December 18, 2017

1.Introduction to Bosch, CR, and RTC5.2

2.SU2 Upgrades: I/O for Parallel Performance

3.SU2 Upgrades: Low Speed Flows with Heat Transfer

4. Future Outlook

INTRODUCTION TO BOSCH, CR, AND RTC5.2

BOSCH

Bosch – technology to enhance quality of life

- Some 59,000¹ researchers and developers work at Bosch: at 120² locations worldwide, in a single network.
- Bosch is one of the world's leading international providers of technology and services.
- Over the past six years, Bosch has invested more than 27 billion euros in research and development.
- Our objective: to develop innovative, useful, and exciting products and solutions to enhance quality of life – technology that is "Invented for life."

 $^{\rm 1}$ As of 12.16 $^{\rm 2}$ R&D locations with >50 associates, as of 12.16

Bosch – a global network

- The 390,000¹ Bosch associates make these solutions possible.
- Bosch has four business sectors, with more than 440¹ subsidiary companies and regional subsidiaries in some 60¹ countries.

Research and Technology Center North America | Palo Alto | 12/18/2017 © 2017 Robert Bosch LLC and affiliates. All rights reserved. ¹ As of 12.16

Bosch – Four business sectors Key figures 2016*

Bosch Group	 73.1 billion euros in sales 389,281 associates 	
 Mobility Solutions One of the world's largest suppliers of mobility solutions 	60% share of sales	
 Industrial Technology Leading in drive and control technology, packaging, and process technology 		
 Energy and Building Technology One of the leading manufacturers of security and communication technology Leading manufacturer of energy-efficent heating products and hot-water solutions 	40% share of sales	
 Consumer Goods Leading supplier of power tools and accessories Leading supplier of household appliances 		
		* As of 12.16

Figures, Facts and Locations

Figures, Facts and Locations

as of December 2016

CR/RTC-NA | Palo Alto New location in Sunnyvale, CA

CR/RTC5.2 Group Overview Multiphysics Modeling and Simulation

► <u>Associates</u>

Xiaobai Li	Sergei Chumakov	Achim Briese
Lead Engineer	Research Engineer II	Senior Engineer
PhD: Caltech	PhD: U of Wisconsin	MS: Georgia Tech.
Bosch RTC: 2010	Bosch RTC: 2010	Bosch RTC: 2015

Daniel Mayer	Jomela Meng	Thomas Economon
Post-doc	Research Engineer	Senior Research Scientist
PhD: RWTH Aachen	PhD: Caltech	PhD: Stanford
Bosch RTC: 2016	Bosch RTC: 2016	Bosch RTC: 2017

SU2 UPGRADES: I/O FOR PARALLEL PERFORMANCE

I/O for Parallel Performance Some History

- ► The early days...
 - ► Early versions of the code had a standalone partitioning module, SU2_DDC, later renamed SU2_PRT.
 - ► SU2_PRT would partition in serial with METIS and write mesh files for each rank.
 - ► Independent parallel I/O: each rank of SU2_CFD reads/writes individual files during execution.
 - Output files merged into a single file for visualization packages (Tecplot / ParaView).
- ▶ Now (Dec 2017)...
 - ► SU2_CFD handles all grid input and solution data output in a fully parallel manner.
 - ASCII or binary mesh files are read in parallel, partitioned with ParMETIS, and redistributed in memory.
 - Binary restart / checkpoint files are written and read in parallel with MPI I/O.
 - ► SU2_SOL module can generate new visualization files at any time, in any format, from a restart.

I/O for Parallel Performance Restart / Checkpoint File Output with MPI I/O

13 Research and Technology Center North America | CR/RTC5.2-NA | 12/18/2017

© 2017 Robert Bosch LLC and affiliates. All rights reserved

I/O for Parallel Performance Restart / Checkpoint File Input with MPI I/O

I/O for Parallel Performance Parallel I/O Performance Example

© 2017 Robert Bosch LLC and affiliates. All rights reserved

I/O for Parallel Performance Streamlining Grid Partitioning (Just Flip It!)

16 Research and Technology Center North America | CR/RTC5.2-NA | 12/18/2017 © 2017 Robert Bosch LLC and affiliates. All rights reserved.

BOSCH

SU2 UPGRADES: LOW SPEED FLOWS WITH HEAT TRANSFER

Low Speed Flows with Heat Transfer More History

- ► SU2 was born out of the transonic, external CFD world in 2012:
 - Density-based flow solver that integrates continuity, momentum, and energy equations in a coupled fashion with each time step (5 coupled equations in 3D).
 - ▶ Proven algorithms and the obvious choice for compressible, high speed problems.
 - ► Typical 2nd-order convective schemes implemented, e.g., JST, Roe, HLLC, etc.
- ► After a couple of years, our interest in low Mach / incompressible problems grew.
 - ▶ But, applying a compressible code to incompressible flows does not work well!
 - Poor convergence behavior
 - Accuracy problems due to poor scaling of dissipation terms
- So, given that we already had a density-based solver, we looked into the many available techniques for modifying a compressible code to compute incompressible or mixed low/high speed flows.

Low Speed Flows with Heat Transfer Available Techniques

- Several approaches implemented into SU2:
 - ► Artificial Compressibility (AC).
 - ► Low Mach preconditioning.
 - Other low Mach corrections, such as for upwind reconstructions.
 - ► Low Mach Roe scheme.
- ► Where do we go from here?
 - ► AC promising but missing features.
 - Other current treatments seem best for mixed low/high-speed flows.
 - Pressure-based incompressible solver being worked on in the open-source, but will take time.

			Journal of Computational Physics 230 (2011) 5263-5287		
N	C		Contents lists available at ScienceDirect	CrossMark	
10		Joi	Journal of Computational Physics		
	and the second se	ELSEVIER jour	rnal homepage: www.elsevier.com/locate/jcp	ity Flows	
	E. S.L.				
	ELSEVIER	A low-Mach number f	îx for Roe's approximate Riemann solver	-14-1	
		Felix Rieper		ned	
	On entrop	Institut für Atmosphäre und Umwelt, Goethe-U	niversität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany	me- ant	
				red,	
	in hig.	ARTICLE INFO	A B S T R A C T	ulso	
P	B. Thorn	Article history: Received 30 April 2010	We present a low-Mach number fix for Roe's approximate Riemann solver (LMRoe). As the Mach number Ma tends to zero, solutions to the Euler equations converge to solutions of		
F	^a Fluid Mechanics a	Received in revised form 8 March 2011 Accepted 11 March 2011 Available online 23 March 2011	the incompressible equations. Yet, standard upwind schemes do not reproduce this conver- gence: the artificial viscosity grows like 1/Ma, leading to a loss of accuracy as $Ma \rightarrow 0$. With a discrete asymptotic analysis of the Roe scheme we identify the responsible term: the	-number compres unsteady problem by low convergen	
	Received 25	Keywords: Incompressible and compressible flow	jump in the normal velocity component ΔU of the Riemann problem. The remedy consists of reducing this term by one order of magnitude in terms of the Mach number. This is achieved by simply multiplying ΔU with the local Mach number. With an asymptotic anal-	ity and convergence s at transonic and so	
		Euler equations Low Mach number flow Roe scheme	ysis it is shown that all discrepancies between continuous and discrete asymptotics disap- pear, while, at the same time, checkerboard modes are suppressed. Low Mach number test	velocities (i.e., lan deteriorate. Conve	
		Numerical dissipation Asymptotic analysis	cases show, first, that the accuracy of LMRoe is independent of the Mach number, second, that the solution converges to the incompressible limit for $Ma \rightarrow 0$ on a fixed mesh and,	nber by altering the envalues become	
ł	Abstract		finally, that the new scheme does not produce pressure checkerboard modes. High speed test cases demonstrate the fall back of the new scheme to the classical Roe scheme at mod-	le to approach unit via time-derivativ	
	This paper addresses entro olution, shock-capturing (Go		erate and high Mach numbers. © 2011 Elsevier Inc. All rights reserved.	own to enhance co	
F	arbitrary jumps in primitive			incompressible sy	
	the inherent numerical entropy monly assumed, but it is pro-			ot be updated fro come by employing	
	directly linked to temperature	1. Introduction		ein a pressure tin nation. With the a	
N	is shown to be proportional t	In some applications compressibl	e and weakly compressible flow regimes exist in a single computational domain. Low	erbolic and a mean	
0	dissipation due to the perpe	Mach number regions in high speed tions the flow regime can suddenly	flow are, for example, stagnation points and the wake behind bodies. In other applica-	he equations in co his term be include	
7.	Godunov methods at low Ma	detonation transition (DDT). This ex	plains the need for solvers that can handle both, the capturing of shock waves in high	are time derivative	
N	and all analytical results are	speed flows as well as the accurate	simulation of weakly compressible flow structures.	d velocity, such th	
H	© 2008 Elsevier file. All figh	Unfortunately, schemes designed	to capture shock waves face a number of problems if applied to low-Mach number flow	1, thereby providin	
	Keywords: High-resolution meth	accuracy due to numerical diffusion	of the order $O(1/Ma)$. The research efforts to overcome these difficulties are enormous	-Mach-number pr	
U	number	and the approaches are diverse.		a unified approac provide for efficie	
		The cancellation problem was solv tities introduced in the wave propas	ed by Sesterhenn et al. in [1]. They avoid it by working only with the fluctuation quan- ration approach by LeVeque [2]	flows at all speed	
		To overcome the stiffness and accu	racy problem in steady flow simulations a variety of time-derivative or flux precondition-	hree notable exce	
	1. Introduction	ing techniques have been developed	and applied to compressible (and incompressible) solvers for the inviscid flow equa-	b pressure and ter prion of an ideal and ter	
1	The finite values (FM)	tions, such as Turker's approach, [3, reduced by (almost) equalizing the p	4), or the characteristic time stepping approach by van Leer et al. [5]. The stiffness is ronggation speeds of the different waves for $Ma \rightarrow 0$, which accelerates the convergence	ed used to condition	
	ods) have proven extreme	to steady state. At the same time, the	e artificial viscosity is tuned correctly for all characteristic waves and thus the accuracy	is of a characterist of sound and refe	
N	applications in the broade			sity with respect	
2	tinuities in compressible fl			which density is	
L		E-mail address: neperionau.uni-frankfurt.d	e	troys the time acc	
ь	* Contains material @ British	0021-9991/5 - see front matter © 2011 Elsev doi:10.1016/j.jcp.2011.03.025	ier inc. All ngnts reserved.	of unsteady flow	
	* Corresponding author. Tel.: E-mail address: d.drikakis@c			an outer loop ste	
	0021-9991/S - see front matter ©			at each physical th	

Low Speed Flows with Heat Transfer Levels of Approximation for Navier-Stokes

	Incompressible Navier-Stokes	Low Mach Navier-Stokes	Compressible Navier-Stokes
Primitive Variables	V = (p, u, v, w)	V = (p, u, v, w, phi)	V = (p, u, v, w, T)
Density	density = constant	density = f(phi)	density = f(p, T)
Pressure	p completely decoupled from density and T (hydrodynamic only, no acoustics)	Hydrodynamic p in momentum, but thermodynamic p can appear in EoS (still no acoustics)	p coupled to both density and T through EoS for the fluid to close the system (e.g., perfect gas)
Energy	Not required. Decoupled energy eqn. or Boussinesq approx. possible for convection.	Simplified form for phi (phi could be T). Use phi to compute density with EoS.	Fully-coupled equation for total energy (internal + kinetic)
Available in SU2?	\checkmark	×	\checkmark

Low Speed Flows with Heat Transfer New Developments

- ► A generalized method for low speed flows with heat transfer:
 - ► Simplicity: fully compressible N-S not required
 - Euler, N-S, and RANS (Low Mach)
 - Conservative formulation
 - Primitive variable-based (p, u, v, w, T)
 - Custom Flux Difference Splitting (upwind) and centered schemes
 - Implicit & explicit time integration
- Enables variable density incompressible flows:
 - Introduces 2 new fluid models: constant density fluid, incompressible ideal gas
 - New non-dimensionalization and initialization routines
- Includes energy equation:
 - New energy eqn. options to disable, decouple, apply Boussinesq approximation, or couple for variable density
 - Heat flux and isothermal wall BCs added

Low Speed Flows with Heat Transfer Sample Results

Temperature .5e-01 0.98 1 1.02 1.1e+00

Density 9.5e-01 0.98 1 1.02 1.1e+00

Left to right: buoyancy-driven cavity (Ra = 10⁶), heated cylinder in external flow (Re = 40), and internal flow through pipe bend (Re = 400).

2 Research and Technology Center North America | CR/RTC5.2-NA | 12/18/2017 © 2017 Robert Bosch LLC and affiliates. All rights reserved.

FUTURE OUTLOOK

Future Outlook

- Some feedback and challenges to our entire development team...
 - ► We all enjoy coding new features, but **usability is critical**!
 - E.g., config option clarity, helpful error messages, automatic parameter tuning, ease of use of adjoint methods.
 - ► Sometimes compute resources are limited: focus on efficient implementations.
 - ► Continue improving interfaces for multi-zone / multiphysics / knowledge extraction.
- ► Some development topics for 2018 (collaboration welcome):
 - Continued work on low speed flows with heat transfer.
 - ▶ Partitioning rewrite was a precursor to improving periodic boundary condition in parallel.
 - ► Improved wall treatments, BCs, and more.
- ► We support the SU2 community!

