

Coupled Adjoint-based Sensitivities Using the SU2 Native FSI Solver

Ruben Sanchez, Charanya Venkatesan-Crome & Rafael Palacios

SU2 Developers' Meeting, December 2017

Current features

- Three-field solver
- Fully implicit
- ALE formulation
- "Elastic" mesh
- Consistent interpolation
- FEM from finite-strain solid mechanics
- Library of materials
- Static/dynamic
- Differentiated using AD
- Parallel implementation

Department of AERONAUTICS

Timeline of the native FSI solver in SU2

	Oct 2014 Ruben at Stanford		June 2016 Multiauthor ECCOMAS paper			July 2016 Ruben at Kaiserslautern		Dec 2017 Tim at Full code Imperial release			
:	2014		2015			20	016		201	7	
	Jul	ly 2015	Oct 2015	Ju	ine 2016		Oct 2016 .		Sept 2	2017	
	Impl	emented	Implemented	FSI	code official	Ir	nplemented	Р	aper on Cou	upled	
	No	on-linear	Coupled FSI		release		Coupled	A	djoints @ IJ	NME	
FEA Solver		A Solver	Solver				Adjoints				

*Ruben Sanchez (2017) A Coupled Adjoint Method for Optimal Design in Fluid-Structure Interaction Problems with Large Displacements, PhD thesis, Imperial College

Native vs. python

- Native FSI simulations from config file with multizone
 - Restricted to TETRA and HEXA
 - Isotropic materials (element-based definition)
 - Coupled adjoint
- Python wrapper by Terrapon's group at U. Liege
 - Co-simulation with third-party FE solver
 - Interpolation and management via CUPyDO
 - Versatile

Evaluation of the coupled adjoint

1) Three-field problem as fixed-point

 $\begin{array}{ll} \min \ J(\mathbf{u},\mathbf{w},\mathbf{z},\boldsymbol{\alpha})\\ \text{subject to} \ \mathbf{u} = \mathbf{S}(\mathbf{u},\mathbf{w},\mathbf{z},\boldsymbol{\alpha})\\ \mathbf{w} = \mathbf{F}(\mathbf{w},\mathbf{z},\boldsymbol{\alpha})\\ \mathbf{z} = \mathbf{M}(\mathbf{u},\boldsymbol{\alpha}) \end{array}$

Evaluation of the coupled adjoint

1) Three-field problem as fixed-point $\min \ J(\mathbf{u}, \mathbf{w}, \mathbf{z}, \boldsymbol{\alpha})$ subject to $\mathbf{u} = \mathbf{S}(\mathbf{u}, \mathbf{w}, \mathbf{z}, \boldsymbol{\alpha})$ $\mathbf{w} = \mathbf{F}(\mathbf{w}, \mathbf{z}, \boldsymbol{\alpha})$ $\mathbf{z} = \mathbf{M}(\mathbf{u}, \boldsymbol{\alpha})$ 2) Lagrangian with co-states

$$\begin{split} \mathscr{L}(\mathbf{u}, \mathbf{ar{u}}, \mathbf{w}, \mathbf{ar{w}}, \mathbf{z}, \mathbf{ar{z}}, oldsymbol{lpha}) = \ J(\mathbf{u}, \mathbf{w}, \mathbf{z}, oldsymbol{lpha}) \ + \mathbf{ar{u}}^T \left[\mathbf{S}(\mathbf{u}, \mathbf{w}, \mathbf{z}, oldsymbol{lpha}) - \mathbf{u}
ight] \ + \mathbf{ar{w}}^T \left[\mathbf{F}(\mathbf{w}, \mathbf{z}, oldsymbol{lpha}) - \mathbf{w}
ight] \ + \mathbf{ar{z}}^T \left[\mathbf{M}(\mathbf{u}, oldsymbol{lpha}) - \mathbf{z}
ight] \end{split}$$

Evaluation of the coupled adjoint

1) Three-field problem as fixed-point min $J(\mathbf{u}, \mathbf{w}, \mathbf{z}, \boldsymbol{\alpha})$ subject to $\mathbf{u} = \mathbf{S}(\mathbf{u}, \mathbf{w}, \mathbf{z}, \boldsymbol{\alpha})$ $\mathbf{w} = \mathbf{F}(\mathbf{w}, \mathbf{z}, \boldsymbol{\alpha})$ $\mathbf{z} = \mathbf{M}(\mathbf{u}, \boldsymbol{\alpha})$ 2) Lagrangian with co-states

$$\begin{split} \mathscr{L}(\mathbf{u}, \bar{\mathbf{u}}, \mathbf{w}, \bar{\mathbf{w}}, \mathbf{z}, \bar{\mathbf{z}}, \boldsymbol{\alpha}) &= \\ J(\mathbf{u}, \mathbf{w}, \mathbf{z}, \boldsymbol{\alpha}) \\ &+ \bar{\mathbf{u}}^T \left[\mathbf{S}(\mathbf{u}, \mathbf{w}, \mathbf{z}, \boldsymbol{\alpha}) - \mathbf{u} \right] \\ &+ \bar{\mathbf{w}}^T \left[\mathbf{F}(\mathbf{w}, \mathbf{z}, \boldsymbol{\alpha}) - \mathbf{w} \right] \\ &+ \bar{\mathbf{z}}^T \left[\mathbf{M}(\mathbf{u}, \boldsymbol{\alpha}) - \mathbf{z} \right] \end{split}$$

3) Solve the co-states

(In a second)

 $J(\mathbf{u}, \mathbf{w}, \mathbf{z}, \boldsymbol{\alpha})$

Evaluation of the coupled adjoint

1) Three-field problem as fixed-point 2) Lagrangian with co-states min $J(\mathbf{u}, \mathbf{w}, \mathbf{z}, \boldsymbol{\alpha})$ $\mathscr{L}(\mathbf{u}, \bar{\mathbf{u}}, \mathbf{w}, \bar{\mathbf{w}}, \mathbf{z}, \bar{\mathbf{z}}, \boldsymbol{\alpha}) =$ subject to $\mathbf{u} = \mathbf{S}(\mathbf{u}, \mathbf{w}, \mathbf{z}, \boldsymbol{\alpha})$ $+ \mathbf{\bar{u}}^T [\mathbf{S}(\mathbf{u}, \mathbf{w}, \mathbf{z}, \boldsymbol{lpha}) - \mathbf{u}]$ $\mathbf{w} = \mathbf{F}(\mathbf{w}, \mathbf{z}, \boldsymbol{\alpha})$ $+ ar{\mathbf{w}}^T \left[\mathbf{F}(\mathbf{w}, \mathbf{z}, oldsymbollpha) - \mathbf{w}
ight]$ $\mathbf{z} = \mathbf{M}(\mathbf{u}, \boldsymbol{\alpha})$ $+ ar{\mathbf{z}}^T \left[\mathbf{M}(\mathbf{u}, oldsymbollpha) - \mathbf{z}
ight]$

3) Solve the co-states

(In a second)

4) Compute sensitivities

$$\frac{\mathrm{d}J}{\mathrm{d}\boldsymbol{\alpha}} = \frac{\partial J}{\partial\boldsymbol{\alpha}} + \bar{\mathbf{u}}^T \left[\frac{\partial \mathbf{S}}{\partial\boldsymbol{\alpha}}\right] + \bar{\mathbf{w}}^T \left[\frac{\partial \mathbf{F}}{\partial\boldsymbol{\alpha}}\right] + \bar{\mathbf{z}}^T \left[\frac{\partial \mathbf{M}}{\partial\boldsymbol{\alpha}}\right]$$

Coupled adjoint equation

$$\bar{\mathbf{u}} = \left[\frac{\partial J}{\partial \mathbf{u}}\right]^T + \left[\frac{\partial \mathbf{S}}{\partial \mathbf{u}}\right]^T \bar{\mathbf{u}} + \left[\frac{\partial \mathbf{M}}{\partial \mathbf{u}}\right]^T \bar{\mathbf{z}}$$

$$\bar{\mathbf{w}} = \left[\frac{\partial J}{\partial \mathbf{w}}\right]^T + \left[\frac{\partial \mathbf{S}}{\partial \mathbf{w}}\right]^T \bar{\mathbf{u}} + \left[\frac{\partial \mathbf{F}}{\partial \mathbf{w}}\right]^T \bar{\mathbf{w}}$$

$$\bar{\mathbf{z}} = \left[\frac{\partial J}{\partial \mathbf{z}}\right]^T + \left[\frac{\partial \mathbf{S}}{\partial \mathbf{z}}\right]^T \bar{\mathbf{u}} + \left[\frac{\partial \mathbf{F}}{\partial \mathbf{z}}\right]^T \bar{\mathbf{w}}$$

• From converged primal FSI

Department of

AERONAUTICS

Block Gauss Seidel solution

Example: A very flexible wall in a choked flow

_h =10

Test case	E_{ref}	u		
Very flexible wall (E20)	20 kPa	0.4		
Flexible wall (E40)	40 kPa	0.4		

Test case	Н	L	
Wide channel (D16)	$16 \cdot h$	/8.h	
Narrow channel (D2)	$2 \cdot h$	40.11	

Inverse problem

- Goal a target shape in FSI equilibrium
- 32 design variables

• Two costs:

$$J_{uncons}(\mathbf{u}) = (\mathbf{u} - \mathbf{u}_{tgt})^T \mathbf{C} (\mathbf{u} - \mathbf{u}_{tgt})$$

$$J_{cons}(\mathbf{u}, \boldsymbol{\alpha}) = (\mathbf{u} - \mathbf{u}_{tgt})^T \mathbf{C}(\mathbf{u} - \mathbf{u}_{tgt}) + k \left(\frac{\sum_{i=1}^{n_{\alpha}} \alpha_i}{n_{\alpha}} - 1.0\right)^2$$

Verification of coupled sensitivities

- Comparison with forward mode and central differences
- Only for 10 zones

Optimal stiffness distribution

Objective Function	Obj. Function Evaluations	Gradient Evaluations	$\min J(\mathbf{u})$	$\Delta oldsymbol{lpha}_{ref}$
$J_{uncons}(\mathbf{u})$	30	29	3.50E-07	-10.33%
$J_{cons}(\mathbf{u}, \boldsymbol{\alpha})$	48	39	3.09E-06	+0.00%

Optimal stiffness distribution

Objective Function	Obj. Function Evaluations	Gradient Evaluations	$\min J(\mathbf{u})$	$\Delta oldsymbol{lpha}_{ref}$
$J_{uncons}(\mathbf{u})$	27	26	5.64E-06	+144.29%
$J_{cons}(\mathbf{u}, \boldsymbol{\alpha})$	111	19	6.27E-02	+0.01%

Optimal electromechanical actuation

On-going

• Aero shape optimization with structure in the loop:

- Up-scaling the problems (e.g. towards the design of 3Dprinted aeroelastic wings)
- Library of RBF interpolation routines
- Python-wrapper with beam skeleton:

From RWTH Aachen

Current To-Do list

- Solid-mechanics-friendly linear algebra solver
- Higher-order FE
- Robust mesh deformation
- Directional properties (composite materials)
- Expanded library of elements and BCs
- Time-domain FSI adjoints
- General multiphysics architecture

