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Why	do	we	need	high-order	schemes?
2nd order schemes have been extremely successful, certainly 

for RANS. SU2 FV is used for many applications…



But…
For some applications 2nd order accuracy may not be sufficient

Examples
• Wake and vortex flows
• Noise prediction
• DES/LES/DNS

DG	solver	is	intended	for	high-
fidelity	modeling	of	the	turbulence,	
i.e.	LES	(wall	resolved	and	wall	
modeled)	and	DNS



Hyperbolic	system	of	PDE’s
Weak	formulation
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Nodal	DG-FEM:	the	basic	principles	(1)

Integrals	are	computed	with	high	enough	accuracy	to	prevent
instabilities	due	to	aliasing	errors



Contribution	from	the	contour	integral
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Nodal	DG-FEM:	the	basic	principles	(2)

Solution	at	the	interfaces	is	multiply	defined	and	discontinuous

Riemann	problem:	Any	approximate	Riemann	solver	can	be	used	=>
stabilizes	the	discretization

1st order	DG-FEM	equals	1st order	FVM!!!



Higher-order	Grids	with	Curved	Elements

In-house	capability	to	generate	higher-order	grids	for	simple	cases

A	lot	more	effort	should	be	put	into	high-order	grid	generation.



Current	Capabilities
• Both 2D and 3D, just like SU2-FV

• All standard elements (tri, quad, tet, pyra, prism, hex)

• Curved elements of arbitrary order

• Arbitrary polynomial order solution elements

• Polynomial order can differ in individual elements

• Symmetric Interior Penalty method for viscous fluxes

• Explicit time integration schemes (Runge-Kutta type)

• Time-accurate local time stepping via ADER-DG

• Task scheduling approach for efficient parallelization

• Preliminary implementation of LES models and shock 
capturing



Access	the	code
• feature_hom branch on GitHub is the main branch for 

the DG solver
• Several other development branches exist



Compile	the	code
• configure script, like the rest of SU2
• Some additional flags are required, for handling of 

matrix multiplications
§ Native implementation (use for debugging only)
§ System BLAS/LAPACK routines
§ Intel MKL
§ LIBXSMM (available on GitHub)



Run	the	code
• Either sequential or parallel via mpirun (mpiexec)
• Additional parameters must be specified in the .cfg file
• Running via python should be possible, but currently 

no benefit (no multi-disciplinary applications yet)



Main	DG-solver	routines
• Partitioning

§ Common/src/geometry_structure_fem_part.cpp
§ Common/src/fem_work_estimate_metis.cpp

• Preprocessing
§ Common/include/fem_geometry_structure.hpp
§ Common/include/fem_standard_element.hpp
§ Common/src/fem_geometry_structure.cpp
§ Common/src/fem_integration_rules.cpp
§ Common/src/fem_standard_element.cpp

• Solver
§ SU2_CFD/include/solver_structure.hpp
§ SU2_CFD/src/integration_time.cpp
§ SU2_CFD/src/solver_direct_mean_fem.cpp
§ Common/src/dense_matrix_product.cpp



Time-accurate	local	time	stepping

• Explicit schemes: Global time step
determined by smallest element

• Inefficient when element
sizes differ significantly

• Solution: time-accurate
local time stepping

• Difficult (impossible?) for Runge-Kutta schemes
• Possible with space-time formulations, e.g. ADER-DG
• Practical restrictions

§ Only finite number of time steps allowed, which differ 
by a factor 2, i.e. Δt, 2Δt, 4Δt, etc.

§ Neighboring elements: max. one time level difference
• Challenge for the load balancing => task scheduler



Conservative	vs.	entropy	variables

• Numerical stability can only be proven for symmetric systems
• Not the case for Navier-Stokes equations
• However, NS can be symmetrized using entropy variables
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• Leads to an implicit formulation, even for explicit schemes



Shock	capturing

• Shock capturing consists of two 
components:

§ Detecting the discontinuity
§ Resolving the discontinuity

• Detecting the discontinuity:
§ Persson and Peraire : Modal decay
§ Clain, Diot and Loubere : MOOD

• Resolving the discontinuity
§ Limiter
§ Artificial viscosity / filtering
§ Sub-cell limiting

MOOD	sensor	/	Subcell limiting

<Sod’s	shock	tube	problem>

MOOD	sensor	/	Filtering



Shock	capturing

• Sod’s shock tube problem
§ MOOD sensor
§ Sub-cell limiting

§ MOOD sensor
§ Filtering



LES	Models

• SGS	Models
– Constant	Smagorinsky

– Wall-Adapting	Local	
Eddy	Viscosity	(WALE)

– More	sophisticated	
models	to	be	
implemented	in	future

• Dynamic	Smagorinsky,	
etc.

• Wall	Models
– One-dimensional	
Equilibrium	BL	Equations𝜈"#" = 𝐶"&Δ&|𝑆*|
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Performance	optimization

• First implementation was very inefficient (< 5% peak on Xeon)

• Collaboration with Intel to improve efficiency
§ Specialized matrix multiplication software (BLAS, LIBXSMM)
§ Explicit unrolling of small loops (specialized 2D, 3D code)
§ Vectorization direction matrix multiplication: 128 byte aligned
§ Element-wise operation fusion for vectorization

• Current performance: ≈ 40% peak on Xeon

• Thoughts about hybrid MPI-OpenMP to increase flexibility

• Potential for advanced (Regent/Legion) methods to help 
scalability and portability



Strong	scaling	test	on	Theta	(ANL)



Results	(p	=	4,	triangles,	inviscid)
Visualization	via	linear	sub-elements



Results,	inviscid
Visualization	via	linear	sub-elements

p	=	3,	tets p	=	4,	triangles



Results,	viscous
Implicit	LES,	SD	7003	(Reynolds	=	60,000)

p	=	4,	hexahedra



Work	to	be	done

• Thorough V&V of the implementation

• Finish shock capturing

• Finish LES wall models

• LES statistics (common to DDES and URANS)

• Improve boundary conditions (non-reflective)

• Performance optimization, including OpenMP parallelization

• Grid motion, sliding mesh interfaces

• Grid sequencing

• High-order grid generation


