

3rd Annual SU2 Developers Meeting

September 16th-18th, 2018 University of Strathclyde, Scottish Universities Insight Institute (SUII) Glasgow, Scotland, UK

Meeting Agenda for Sunday September 16th

- 0900 0915: Welcome & Agenda
- 0915 1045: Introduction to developing in SU2: Covering high level class design, how to modify the code, working with GitHub (branching, PRs, regressions), etc.
- **1045 1615: Hack session:** Separate groups working on various problems (lunch and snacks/coffee offered in the room while working)
- **1615 1700: Wrap-up Presentations:** Two-slide presentations on major progress for the day, including discussion
- 1730 open: Social at "The Counting House", 2 St Vincent Place, G1 2DH

Meeting Agenda for Monday September 17th

- 0800 0830: Welcome & Year in review, T. Economon (Bosch), J.J. Alonso (Stanford)
- **0830 0900: SU2-NEMO Thermochemistry and high-Mach aerothermodynamics,** <u>M. Fossati</u> (U. of Strathclyde), T. Magin, J.B. Scoggins, M. Pini, P. Colonna, R. Sanchez, T. Economon, D. Mayer, N. Beishuizen, C. Garbacz-Gomes, W.T. Meier, J.J. Alonso, T. van der Stelt
- 0900 0930: Toward optimization for reactive flows in SU2, <u>N. Beishuizen</u> (Bosch), D. Mayer, T. Economon
- 0930 1000: Conjugate heat transfer problems and computing coupled discrete adjoints using AD, O. Burghardt (TU Kaiserslautern), T. Albring, N. Gauger

1000 – 1030: Coffee break

- 1030 1100: Physics-based RANS model-form UQ in SU2, J. Mukhopadhaya (Stanford), A. Mishra, J.J. Alonso, G. laccarino
- 1100 1130: Aeroacoustics prediction and optimization capabilities in SU2, <u>B. Zhou</u> (NIA/NASA-Langley), T. Albring, N. Gauger, C. Ilario, T. Economon, J.J. Alonso, L. V. Lopes, H. Yao, S. Peng, L. Davidson
- 1130 1200: Higher-order SU2: DG-FEM solver and WENO-FV solver with LES/ILES/WMLES applications, *E. van der Weide* (U. of Twente), J.J. Alonso, D. Drikakis, K. Singh, P. Urbanczik, E. Molina, J.H. Choi

1200 – 1300: Lunch

Stanford

- 1300 1330: Unsteady optimization with SU2: application to turbomachinery design, A. Rubino (TU Delft), M. Pini, N. Anand, P. Colonna
- 1330 1400: Preliminary results on rotor-fuselage aerodynamics using SU2: status and challenges, <u>M. Morelli</u> (Politecnico di Milano), G. Gori, A. Guardone
- 1400 1430: Anisotropic mesh adaptation with the INRIA AMG library, A. Loseille (INRIA), V. Menier, B. Munguia, J.J. Alonso

1430 – 1500: Coffee break

- 1500 1530: Simulation and adjoint-based design for variable density incompressible flows with heat transfer, T. Economon (Bosch)
- 1530 1600: Implementation of pressure-based Navier-Stokes for wind energy applications, A. Ravishankara (ECN part of TNO), H. Ozdemir, E. van der Weide
- 1600 1630: SU2-IDS: International Developers Society, <u>T. Albring</u>, <u>R. Sanchez</u> (TU Kaiserslautern), T. Economon, F. Palacios

Delft

1630 – 1700: Wrap up, <u>J.J. Alonso</u> (Stanford)

In order to participate (in-person or virtually), please register for the meeting by following the link on the SU2 home page (<u>https://su2code.github.io</u>). *Please note that all stated times are British Summer Time (BST). **The presenter author is underlined

Hackathon topics

- 1. Driver structure
- 2. Input/Output structure reformatting
- 3. Heterogeneous restart (e.g. RANS from an Euler and mesh mapping/interpolation)
- 4. Incompressible solver
- 5. Multiple config files and meshes multi-point optimization
- 6. General definitions for objective functions
- 7. SU2-NEMO thermochemistry structure and libraries interfaces

SU2-NEMO (Non-Equilibrium MOdels): Thermochemistry and high-Mach flows

M. Fossati, C. Garbacz-Gomez, J.J. Alonso, W.T. Maier, R. Sanchez, M. Pini, P. Colonna, T. van der Stelt, T. Magin, J.B. Scoggins, T. Economon, D. Mayer, N. Beishuizen

University of Strathclyde

"Enhance the multi-physics characteristics of SU2 and extend the spectrum of applications, <u>with a focus on design</u>"

- Define the roadmap for a coordinated development of thermochemistry and nonequilibrium models
- Incorporate advanced models for finite-rate chemistry and thermal nonequilibrium
- Consolidate the implementation and use of advanced thermodynamic models
- Reboot under a new perspective the modelling of high-temperature effects

People and selected applications, to date

- High-Mach and high-enthalpy external aerothermodynamics
- Laminar to turbulent transition in highlycompressible regimes
- Non-ideal gas dynamics of complex fluids departing from ideal gas laws
- Laminar premixed combustion for domestic heating
- Combustion in industrial processes
- From atmospheric entry and meteor to biomass pyrolysis

Outline

SU2

- 1. Some background equations and models
- 2. Mutation++, Cantera and FluidProp
- 3. Internal gasdynamics: SU2 and FluidProp
- 4. External aerodynamics: SU2 and Mutation++
- 5. The road ahead

3rd Annual SU2 Developers Meeting

Some background equations and models

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) &= 0\\ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\rho \vec{u} \otimes \vec{u} + P \bar{I} - \bar{\tau}) &= 0\\ \frac{\partial \rho e}{\partial t} + \nabla \cdot (\rho e \vec{u} + P \bar{I} \cdot \vec{u} - \bar{\tau} \cdot \vec{u} + \vec{q}) &= 0 \end{aligned}$$

$$P = \rho RT$$

$$e = c_v T$$

$$\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \mu \delta_{ij} \nabla \cdot \vec{u}$$

$$\vec{q} = -k \nabla T$$

Some background equations and models

$$\begin{aligned} \frac{\partial \rho_s}{\partial t} + \nabla \cdot \left(\rho_s \vec{u} - \rho_s \vec{u}_{d,1}\right) &= \dot{w}_s \\ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot \left(\rho \vec{u} \otimes \vec{u} + P\bar{I} - \bar{\tau}\right) &= 0 \\ \frac{\partial \rho e}{\partial t} + \nabla \cdot \left(\rho e\vec{u} + P\bar{I} \cdot \vec{u} - \bar{\tau} \cdot \vec{u} + \vec{q}\right) &= \nabla \cdot \left(-\sum_s h_s \rho_s \vec{u}_{d,s}\right) \end{aligned}$$

Some background equations and models

$$\begin{split} \frac{\partial \rho_s}{\partial t} + \nabla \cdot \left(\rho_s \vec{u} - \rho_s \vec{u}_{d,1}\right) &= \dot{w}_s \\ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot \left(\rho \vec{u} \otimes \vec{u} + P \bar{I} - \bar{\tau}\right) &= 0 \\ \frac{\partial \rho e}{\partial t} + \nabla \cdot \left(\rho e \vec{u} + P \bar{I} \cdot \vec{u} - \bar{\tau} \cdot \vec{u} + \vec{q}\right) &= \nabla \cdot \left(-\sum_s h_s \rho_s \vec{u}_{d,s}\right) - \nabla \cdot \vec{q}_v \\ \frac{\partial \rho e_v}{\partial t} + \nabla \cdot \left(\rho e_v \vec{u} + \vec{q}_v + \sum_s e_{v,s} \rho_s \vec{u}_{d,s}\right) &= \sum_s Q_s^v + \sum_s Q_s^{t-v} \\ P &= P(\rho_s, T) & \tau_{ij} &= \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) - \frac{2}{3}\mu \delta_{ij} \nabla \cdot \vec{u} \\ e &= e(X_s, T) & \vec{q} &= -k \nabla T \\ \rho e_v &= \sum_s \rho_s e_{v,s} \\ \vec{q}_v &= -k_v \nabla T_v \\ e_{v,s} &= \frac{R}{W_s} \frac{\theta_{v,s}}{\exp(\theta_{v,s}/T_v) - 1} \end{split}$$

Some background equations and models: where were we?

11

Initial efforts by Sean Copeland (PhD, 2015, Stanford University):

"A Continuous Adjoint Formulation for Hypersonic Flows in Thermochemical Nonequilibrium"

- continuum, steady, viscous, multi-component, gas mixture in thermochemical nonequilibrium
- Fast coupling assumptions
- Rigid-Rotator-Harmonic-Oscillator (RRHO) thermodynamics
- Transport properties
 - Diffusion Fick's Law w/ closure terms (Sutton, 1998)
 - Viscosity Newtonian fluid w/ Stokes' Hypothesis
 - Thermal Cond. Fourier's Law
- Transport coefficients: Blottner/Eucken + Wilke's semiempirical mixing rule
- Landau-Teller vibrational relaxation with Park's limiting cross section
- Finite-rate chemistry (Arrhenius-type)

Some background equations and models: where were we?

- Derivation of continuous adjoint system, boundary conditions & surface sensitivities for steady, viscous, NE flow environments
- Implementation (in SU2) of flow and adjoint equations
- Adjoint equations formulated in a general way to support substitution of other thermochemical models
- All contributions in *feature_TNE2* and *feature_AdjTNE2*,

... but SU_2 has continued to evolve...new and more general implementation needed!

Some background equations and models: where we are heading

$$\begin{split} \frac{\partial \rho_s}{\partial t} + \nabla \cdot (\rho_s \vec{u} - \underline{\rho_s \vec{u}_{d,1}}) &= \underline{\dot{w}_s} \\ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\rho \vec{u} \otimes \vec{u} + P \vec{I} - \bar{\tau}) &= 0 \\ \frac{\partial \rho e}{\partial t} + \nabla \cdot (\rho e \vec{u} + P \vec{I} \cdot \vec{u} - \bar{\tau} \cdot \vec{u} + \vec{q}) &= \underline{\nabla} \cdot (-\sum_s h_s \rho_s \vec{u}_{d,s}) - \nabla \cdot \vec{q}_v \\ \frac{\partial \rho e_v}{\partial t} + \nabla \cdot (\rho e_v \vec{u} + \vec{q}_v + \sum_s e_{v,s} \rho_s \vec{u}_{d,s}) &= \sum_s Q_s^v + \sum_s Q_s^{t-v} \\ P &= P(\rho_s, T) \\ e &= e(X_s, T) \\ \rho e_v &= \sum_s \rho_s e_{v,s} \\ \vec{q}_v &= -k_v \nabla T_v \\ e_{v,s} &= \frac{R}{W_s} \frac{\theta_{v,s}}{\exp(\theta_{v,s}/T_v) - 1} \end{split}$$

SU2 NonEquilibrium MOdels

Mutation++

SU2 NonEquilibrium MOdels

Cantera is an open-source suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. The software automates the chemical kinetic, thermodynamic, and transport calculations so that the users can efficiently incorporate detailed chemical thermo-kinetics and transport models into their calculations

- It is widely used in the combustion industry
- Low mach incompressible equilibrium chemistry

https://www.cantera.org/docs/sphinx/html/index.html

Some background equations and models: where we are heading

$$\begin{split} \frac{\partial \rho_s}{\partial t} + \nabla \cdot (\rho_s \vec{u} - \rho_s \vec{u}_{d,1}) &= \dot{w}_s \\ \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\rho \vec{u} \otimes \vec{u} + P \vec{I} - \vec{\tau}) &= 0 \\ \frac{\partial \rho e}{\partial t} + \nabla \cdot (\rho e \vec{u} + P \vec{I} \cdot \vec{u} - \vec{\tau} \cdot \vec{u} + \vec{q}) &= \nabla \cdot (-\sum_s h_s \rho_s \vec{u}_{d,s}) - \nabla \cdot \vec{q}_v \\ \frac{\partial \rho e_v}{\partial t} + \nabla \cdot (\rho e_v \vec{u} + \vec{q}_v + \sum_s e_{v,s} \rho_s \vec{u}_{d,s}) &= \sum_s Q_s^v + \sum_s Q_s^{t-v} \\ \hline P &= P(\rho_s, T) \\ e &= e(X_s, T) \\ \rho e_v &= \sum_s \rho_s e_{v,s} \\ \vec{q}_v &= -k_v \nabla T_v \\ e_{v,s} &= \frac{R}{W_s} \frac{\theta_{v,s}}{\exp(\theta_{v,s}/T_v) - 1} \end{split}$$

FluidProp

Thermophysical property calculator for arbitrary fluids:

- entire thermodynamic plane liquid and gas phase
- easily switching between all equations of state
- accurate properties also close to critical point
- multicomponent mixtures
- computes "real" critical points of mixtures
- advanced methods for phase equilibria
- Look-up tables (under development)

http://www.asimptote.nl/software/fluidprop

Fluids

Inorganic (CO, CO₂, H₂S, SO₂, O₂, N₂, ...) Hydrocarbons (linear, branched, cyclic, methane, toluene, ...) Alcohols, ketones (methanol, propanol, acetone, ...) Refrigerants (incl. recently developed, R12, R123, PP80, ...) Siloxanes (linear, cyclic, MM, MdM, MD6M, ...)

Equations of state

SU2 NonEquilibrium MOdels

Shock-induced flow with complex fluids

- Fluid: siloxane MM
- Fully turbulent, Roe scheme
- FluidProp-SW

Flow Past Supersonic ORC Turbine Cascade

- Fluid: siloxane MM
- Fully turbulent, Roe scheme
- Comparison FluidProp-SW vs FluidProp-LuT

Thermodynamic Models: Computational Cost

External aerodynamics: Double wedge at M7.11

Mach _{FS}	7.11
Unit Reynolds [m ⁻¹]	55,880
Temperature _{FS} [K]	191
Pressure _{FS} [Pa]	391.735
Temperature _w [K]	300
Fluid	N ₂ O ₂
θ_1 / θ_2	30° / 55°

The Open-Source CFD Code

Temperature contours [K]. Calorically perfect (left), thermally perfect (right)

External aerodynamics: Edney IV interaction

14

Mach	8.03 / 5.25
Unit Reynolds [m ⁻¹]	6.75 10 ⁶
Temperature [K]	111.56 / 238.04
Pressure [Pa]	985.01 / 6,996
Temperature _w [K]	294.44
Fluid	N_2O_2
Impinging shock [deg]	18.1114

External aerodynamics: Proximal bodies

Mach	10
Temperature [K]	111.56
Pressure [Pa]	985.01
Fluid	N_2O_2
D _P /D _S	18.1114
y/D _P	1.088
x/D _P	4

SU2 De Open-Source CFD Code

Mach number contours. Inviscid flow BGK scheme Auch number

0.0 1.0 1.9 2.9 3.9 4.8 5.8 6.8 7.7 8.7 9.7

The road ahead ...

SU2 The Open-Source CFD Code

- Define and implement a smart thermochemistry interface
- Augment the library of schemes for improved robustness with high Mach (including MUSCL)
- Extend the BC formulations to account for radiative equilibrium and potentially slip flow (for high-Mach)
- Formulate and implement models for the finite-rate energy exchange (i.e. multiple temperatures and energy modes)
- Ensure consistency with the algorithm differentiation for adjoint formulation

- Treatment of the Jacobian matrix of source terms
- Consolidate the multispecies and finite rate chemistry models with attention to the stiffness of the problem
- Introduce compressibility effects for turbulence modeling
- Transition modeling in highly compressible flows
- Coupling with conjugate heat transfer approach
- Coupling with Maxwell to account for MHD

... and counting

Thank you, Happy to take any questions

Hackathon topic(s)

Q: What would be a "smart" interface for the thermodynamics and chemistry libraries (e.g. look-up tables, more integrated connection)?

Q: What is smart and what level of flexibility (i.e. plug-and-play) do we want to ensure/consider?

Q: What would be the impact on the config. file wrt to the thermodynamic models?

```
      FLUID_MODEL

      STANDARD_AIR
      Perfect ideal gas model for air, i.e. R =287.058 J/kgK, γ = 1.4 etc.

      USER_DEFINED<sup>+</sup>
      Mainly anything else for which more details are required

      if (FLUID_MODEL == USER_DEFINED) { more options might be needed

      THERMAL_EOS
      (Ideal_gas, Van_der_Waals, Peng_robinson, etc.)

      CALORIC_EOS
      (Perfect_gas, NASA_fit, etc.)

      COMPOSITION
      (Mass/Molar fractions of species)

      }
```

CHEMISTRY (Frozen, Equilibrium, Finite-rate)

if (CHEMISTRY == Equilibrium){ even more options might be needed}
if (CHEMISTRY == Finite_rate){ a lot of options might be needed}