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Conjugate heat transfer (CHT) problems

Problem characteristics:

I multiple physical zones that exchange
heat at some interfaces

I different governing equation sytems,
conductivities, timesteps, ...

Why to start developments in SU2?

I approach from a Bosch research
department working on pin-fin cooler
optimizations

I joint project with them since 2017

Can SU2 give accurate sensitivities?
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Forward (primal) implementation

Required ...

I A heat solver (cf. CHeatSolverFVM) that can be run in solid zones and
coupled to CIncNSSolver

I Transfer routines to communicate energies (cf.
CTransfer ConjugateHeatVars-class)

I A new driver to iterate the solvers with this kind of coupling (ended up
in a much more general approach to handle arbitrary ones, cf.
CMultiphysicsZonalDriver)
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3D test case

Heated aluminium cylinder in (coolant) water flow (at 0, 25m
s , 300K at inlet,

4W heat load at pin’s top).

Pin’s height/diameter: 5mm/2mm. Reaches 319K in average at its top in
good agreement to FLUENT.

Ole Burghardt CHT problems and computing coupled discrete adjoints using AD 5/ 16



Optimization with shape gradients

Define

I X be the vector of mesh node coordinates determining the pin’s surface

I an objective function J(X ), e.g. the average temperature at a pin’s tip

∇J(X ∗) suggests the geometry update
for minimization of J. It should be
passed

I to an appropriate shape update
function (FFD, filtering, ...)

I and an optimizer.
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How to obtain such sensitivities?

J(X ) depends – more precisely – on a state vector U holding pressure,
momentum and temperature solutions at each node,

J(X ) = J̃(X ,U(X )).

Denote by G a CFD solver iterating the vectors Uk , that is

Uk+1 = G(X )(Uk).

The solution U(X ) is given by the first iterate solution fulfilling

‖G(X )(U)− U‖ < ε.

The computation cost of ∇J(X ) crucially depends on the complexity of G.
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Rewriting J(X ) as a Lagrangian

Regard J and G as functions of two vectors X ,U and set up the Lagrangian

L(X ,U) = J̃(X ,U) + (G̃(X ,U)− U)T · λ.

Along actual flow solutions, L equals J̃, independent of the choice of λ.

By λ we denote the factor (
”
Lagrange multiplier“) such that

∇U J̃(X ,U) = (DU G̃T (X ,U)− Id) · λ.

This condition ensures that at flow solutions we have

∇J(X ) = ∇XL(X ,U)

which is cheap to compute as it does not involve the flow solver anymore.
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Method in SU2: fixed point iteration for λ

To obtain λ, we carry out the fixed point iteration

λ
!

= ∇U J̃(X ,U) + DU G̃T (X ,U) · λ

Note that so far we didn’t make any assumptions on G except for being able
to carry out the derivative

DU G̃T (X ,U) · λ

subject to an arbitrary vector λ to compute ∇J(X ).
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Use of AD (in reverse mode)

For an arbitrary implementation of a function f : Rn → Rn and an arbitrary
vector y ∈ Rn, automatic differentiation in reverse mode computes

Df T (x̃) · λ

by the following steps:

I registering the input variables x of the computer program f

I recording a tape while running f at a given point x̃ , that is storing Df (x̃)

I setting the values λ

I evaluating Df T (x̃) · λ
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How to use this generality for multiphysics?

Let our iterator G actually consist of two coupled iterators,

(
GA
GB

)
, with two

sets of meshes X ,Y and variables UA,UB being iterated like

UA
k 7→ GA(X ,UB

k ,U
A
k ) = UA

k+1

UB
k 7→ GB(Y ,UA

k ,U
B
k ) = UB

k+1.

We then compute ∇J(X ,Y ) by simply computing both λA and λB in the
corresponding Lagrangian

J̃(X ,Y ,UA,UB) +

(
GA(X ,UB ,UA)− UA

GB(Y ,UA,UB)− UB

)
·
(
λA

λB

)
.
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Taking care of the cross terms

The fixed point interation for obtaining

(
λA

λB

)
now contains cross derivatives:

(
λAk+1

λBk+1

)
=

(
∂

∂UAGA ∂
∂UAGB

∂
∂UB GA ∂

∂UB GB
)
·
(
λAk
λBk

)
To keep the multizone discrete adjoint driver as modular as possible, the
implementation allows for:

I initialising only parts of the right hand side adjoint vector

I evaluating with respect to arbitrary variable vectors

I restricting the evaluation to parts of the computational graph.

This provides a fair functionality for further stable and efficient
developments.
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Cylinder test case

Let GA be a RANS solver (with coupled heat equation) and GB a heat
solver, both coupled by transferring temperature and heat flux data.

The test geometry (denoted by X ∗) is a cylinder, heated from the inside and
surrounded by a fluid flow:

I Water, 300K / 0, 25m
s at inlet

I Fixed conductivity (Pr = 7)

I Aluminium

I Heat load at inner wall: 4 kW
m
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Primal solve and objective function

I Obtained flow solution U∗

I Using averaged
temperature at interface
as objective function

I J̃(X ∗,U∗) = 415K

We easily compute the value

∇J(X ) = ∇X J̃(X ∗,U∗) + DXGT (X ∗,U∗) · λ.

with the help of λ. To validate ...

Ole Burghardt CHT problems and computing coupled discrete adjoints using AD 14/ 16



Geometry change to validate ∇J(X )

I we suggest a new geometry
Yh = X + hδ

I J(Y ) ≈ J(X ) + h∇J(X ) · δ
I check lim

h→0

J(Yh)−J(X )
h

?
= ∇J(X ) · δ

Changing the value of h, we obtain the following data:

h (in mm) J(Y ) (in K ) J(Y )−J(X )
h (in K

m ) rel. error to ∇J(X ) · δ
1.0e−1 417, 873795 −65, 89 8, 68%
5.0e−2 417, 877298 −61, 74 1, 83%
1.0e−3 417, 879767 −60, 7 1, 15%
5.0e−3 417, 880081 −60, 6 0, 05%
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Feature work

I Uniting the CHT and turbomachinery functionalities for cooled turbine
blade optimizations

I Speed up existing coupled simulations

I Trying out vertex-morphing optimizers, especially for internal flow
applications
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