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Introductory example

Computing accurate (discrete) adjoints in SU2

Coupled problems and validations
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Conjugate heat transfer (CHT) problems I & CRsERSLATER

Problem characteristics:

» multiple physical zones that exchange
heat at some interfaces

» different governing equation sytems,
conductivities, timesteps, ...

Why to start developments in SU27

» approach from a Bosch research
department working on pin-fin cooler
optimizations

> joint project with them since 2017

Can SU2 give accurate sensitivities?
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Forward (primal) implementation

Required ...

> A heat solver (cf. CHeatSolverFVM) that can be run in solid zones and
coupled to CIncNSSolver

» Transfer routines to communicate energies (cf.
CTransfer_ConjugateHeatVars-class)

> A new driver to iterate the solvers with this kind of coupling (ended up
in a much more general approach to handle arbitrary ones, cf.
CMultiphysicsZonalDriver)
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3D test case [ & KASERSLAUTERN

Heated aluminium cylinder in (coolant) water flow (at 0,257, 300K at inlet,
4W heat load at pin's top).

Pin's height/diameter: 5mm/2mm. Reaches 319K in average at its top in
good agreement to FLUENT.
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Optimization with shape gradients
Define
» X be the vector of mesh node coordinates determining the pin's surface

> an objective function J(X), e.g. the average temperature at a pin's tip

VJ(X*) suggests the geometry update
for minimization of J. It should be
passed

> to an appropriate shape update
function (FFD, filtering, ...)

» and an optimizer.
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How to obtain such sensitivities?

J(X) depends — more precisely — on a state vector U holding pressure,
momentum and temperature solutions at each node,

J(X) = J(X, U(X)).
Denote by G a CFD solver iterating the vectors Uy, that is
Uis1 = G(x)(Uk)-

The solution U(X) is given by the first iterate solution fulfilling

G (V) = Ul <e.

The computation cost of VJ(X) crucially depends on the complexity of G.

Ole Burghardt CHT problems and computing coupled discrete adjoints using AD 7/ 16



- -
= TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Rewriting J(X) as a Lagrangian

Regard J and G as functions of two vectors X, U and set up the Lagrangian
L(X,U) = J(X,U) + (G(X,U) = U)T -\

Along actual flow solutions, L equals J independent of the choice of A.

By A we denote the factor (,Lagrange multiplier*) such that
Vud(X,U) = (DyGT(X,U) —1d) - \.
This condition ensures that at flow solutions we have
VJ(X) =VxL(X,U)

which is cheap to compute as it does not involve the flow solver anymore.
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Method in SU2: fixed point iteration for A TE s

To obtain A, we carry out the fixed point iteration
A= VuJ(X, U)+ DT (X, U) - A

Note that so far we didn't make any assumptions on G except for being able
to carry out the derivative

DyGT(X,U) -\

subject to an arbitrary vector A to compute VJ(X).
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Use of AD (in reverse mode) T3 GRERstiTeR

For an arbitrary implementation of a function f : R” — R" and an arbitrary
vector y € R", automatic differentiation in reverse mode computes

DFT(X)- X

by the following steps:

registering the input variables x of the computer program f

recording a tape while running f at a given point X, that is storing Df(X)
setting the values A

evaluating Df T (%) - A

vV v v v
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How to use this generality for multiphysics?

A

Let our iterator G actually consist of two coupled iterators, (g ) with two

gB
sets of meshes X, Y and variables U”, UB being iterated like

Ug = GAX, UG, UR) = Uy

UkB = gB(Y7 UI/<47 UkB) = UE+1'
We then compute VJ(X, Y) by simply computing both A and AB in the
corresponding Lagrangian

j A ey (GAXUB U = UAY (AA
J(X,Y’U aU )+(gB(y7uA7uB)_UB : /\B :
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Taking care of the cross terms

A
/\B

Ak+1 09" aorY Ak
To keep the multizone discrete adjoint driver as modular as possible, the
implementation allows for:

The fixed point interation for obtaining ( now contains cross derivatives:

» initialising only parts of the right hand side adjoint vector
» evaluating with respect to arbitrary variable vectors

> restricting the evaluation to parts of the computational graph.

This provides a fair functionality for further stable and efficient
developments.
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Cylinder test case

Let GA be a RANS solver (with coupled heat equation) and GB a heat
solver, both coupled by transferring temperature and heat flux data.

The test geometry (denoted by X*) is a cylinder, heated from the inside and
surrounded by a fluid flow:

» Water, 300K / 0,257 at inlet > Aluminium

» Fixed conductivity (Pr = 7) » Heat load at inner wall: 4%
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Primal solve and objective function

» Obtained flow solution U*

» Using averaged
temperature at interface
as objective function

» J(X*,U*) = 415K

We easily compute the value
VJ(X) = VxJ(X*, U*) + DxGT(X*, U*) - A.

with the help of A. To validate ...
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Geometry change to validate VJ(X) [ 2 GRESITRN

> we suggest a new geometry
Yo=X+ho

> J(Y) ~ J(X) + BV I(X) -6
> check lim 20090 L g j(x) . 5
h—0

Changing the value of h, we obtain the following data:

h (in mm) ‘ J(Y) (in K) ‘ w (in ) ‘ rel. error to VJ(X) -6

1.0e7T 417,873795 —65,89 8,68%
5.0e72 417,877298 —61,74 1,83%
1.0e73 417,879767 —60,7 1,15%
5.0e 3 417,880081 —60,6 0,05%
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Feature work

» Uniting the CHT and turbomachinery functionalities for cooled turbine
blade optimizations

> Speed up existing coupled simulations

» Trying out vertex-morphing optimizers, especially for internal flow
applications
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