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Need for Aeroacoustic Optimization

Source: FAA Forecast 2018-2038 Latest FAA forecast: demand to air
travel to DOUBLE by 2038

Noise reduction attained in the last
decade has started to plateau

Various noise sources present at di↵erent
frequencies but comparable amplitudes –
must be reduced by similar amounts for
discernible overall noise reduction

To meet stringent noise reduction goals,
it is insu�cient to only reduce high-lift
and landing gear noise – trailing edge
scattering (‘lower bound’) must be
reduced.(1)

Require e�cient simulation and design
tools to explore innovative and
unconventional configurations and
control strategies

Porous TE
LE and TE serrations
...

(1). D. P. Lockard and G. M. Lilley, The Airframe Noise Reduction Challege, NASA Report 2004-213013
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Review of Existing Work

Existing Work on Aeroacoustic Optimization – A Non-Exhaustive List
Airfoil design in turbulent flow (2D URANS+FW-H) using discrete adjoint, Rumpfkeil & Zingg, 2010

Helicopter blade design (3D URANS+FW-H) using discrete adjoint, Fabiano et al., 2015

Optimal control of shear-layer noise (DNS) using continuous adjoint, Buchta et al. 2016

Porous trailing-edge design (LES+APE) using AD-based discrete adjoint, Zhou, Gauger et al., 2016–2018

Optimizations involving high-fidelity and scale-resolving simulations limited to simple geometries

Challenges

Computationally intensive: (Nxyz ⇠ 108) ⇥ (N�t ⇠ 105) =) CPU-hrs ⇠?

Large set of design variables with mostly uncharted design spaces

Noise reducing modifications often accompanied by a marked loss of lift

This work: Consistent and robust discrete adjoint on the basis of
algorithmic di↵erentiation (AD) to explore unconventional design
concepts
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A Coupled CFD-CAA Framework for Noise Prediction

A boundary integral formulation of the permeable surface Ffowcs Williams-Hawkings
(FW-H) acoustic solver is coupled with CFD solver in SU2 for e�cient acoustic
computations at arbitrary observer locations. [Di Francescantonio, 1997]
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Flow field in ⌦1 resolved by CFD

p, ⇢, u0
i on �p extracted from CFD data

p0
T & p0

L: ‘thickness’ and ‘loading’ noise source

Quadrupole source (p0
Q) negligible for low M1

[·]ret : source terms evaluated in ‘retarded’ time

2-D freq-domain formulation also implemented
(Lockard, 2000)
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Coupled CFD-FWH Noise Prediction and Optimization Framework

Un=1,↵ CFD Solver FWH Solver J =
q

(p0)2
Un|�p p0

Adjoint FWHAdjoint CFDdL

d↵ J̄ = 1

@J
@Un

���p
Un

Ūn

Un|�p

CFD Solver: Un = G n(Un,Un�1,Un�2), URANS or DDES

FWH Solver: p0
obs(~x , t) = p0

T + p0
L = Fn(U|�p ,~x , t) , invoked via SU2 SOL

Adjoint CFD: Ūn = Ḡ n(Ūn, Ūn�1, Ūn�2) + ( @J
@Un

���p )T

Un|�p : Flow variables at time step n on the FWH surface �p

@J
@Un

���p : sensitivity of the noise objective with respect to flow variables
evaluated on the FWH surface �p

Shape optimization process fully automated in SU2

See related publications for details on coupled adjoint formulation
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Validation: 3-D Rod-Airfoil Configuration

NACA0012 airfoil section
(C = 0.1m) with S = 0.5C placed at
a distance � = 1.0C behind a
cylinder of diameter D = 0.1C

U1 = 72m/s, Rec = 4.8⇥ 105

Structured mesh with ⇠ 6.0 million
elements with refinement in
rod-airfoil gap

Nearfield acoustic sources computed
by DDES+SA (Developed by
Eduardo Molina)

Propagation to 3 farfield microphone
positions (r = 18.5C , ✓ = 45�, 90�

and 135�) using time-domain FWH.

Farfield p0 computed based on
28,500 samples, (⇠ 38 cycles of
airfoil lift fluctuation)
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URANS to DDES

URANS-SA DDES-SA

2M 2M

4M 4M

URANS+Turbulence Model:
well-tuned and inexepnsive in
attached boundary layer but
inaccurate in separated flow

LES cost scales strongly with Re
in wall-bounded flows but
accurate and independnet of Re
in separated zones

Delayed Detached Eddy
Simulation (DDES): RANS in
boundary layer; LES in separated
region (Spalart et al., 2006)

More refinement ! more
turbulent content (LES-like
behaviour)

Crucial for broadband noise
prediction
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Validation: Farfield Noise Spectra
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DDES + FWH

✓ = 135�

Good agreement with measurement around the spectral peak: tonal frequency
St = 0.19 and peak SPL well-captured

Low frequency error: installation e↵ect not modeled in simulation
(also noted by Giret et al. 2012)
Broadband range over-predicted (work in progress)

Excessive mesh coarsening after impingement and in airfoil wake (switch back to
RANS mode)
Spurious noise from neglecting quadrupole source (Greschner et al. 2008)
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Noise Minimization of a Rod-Airfoil Configuration (2-D)
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——: FWH Surface

NACA0012 airfoil at a distance
� = 0.7C behind the cylinder

Airfoil pitched to AoA=5�

U1 = 72m/s, Rec = 4.8⇥ 105

Hybrid mesh with ⇠ 100K elements
with refinement within FWH surface

Nearfield acoustic source computed
by URANS+SA

Propagation to 3 farfield microphone
positions (r = 100C , ✓ = 45�, 90�

and 135�) using frequency-domain
FWH (Lockard, 2000).

Farfield p0 corresponds to ⇠ 9 cycles
of airfoil lift fluctuation

JN = RMS(p0)

Shape design via free-form
deformation(FFD) =) 256 DV’s
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Optimization History: Unconstrained vs. Lift-Constrained

Design Iteration

J
/J

0

0 5 10 15 20 25 30 35

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise
Mean Lift

Unconstrained Noise Minimization

Design Iteration

J
/J

0

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

1.2
Noise
Mean Lift

Lift-Constrained Noise Minimization

Aeroacoustic and aerodynamic design objectives directly competing
Unconstrained noise minimization: ⇠ 36% noise reduction acccompanied by
marked loss of lift (⇠ 59%!)
Lift-constrained noise minimization: more modest noise reduction (⇠ 27%) but
mean lift maintained at baseline level

Beckett Y. Zhou et al. Aeroacoustic Optimization in SU2 10/ 17



Directivities and Optimized Designs
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Optimized Designs

Noise reduction in all directions with exception of shallow upstream angles
Surface waviness in both noise-minimized and lift-constrained-noise-minimized
designs
Noted in works of other groups, mostly in spanwise waviness along LE
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Noise Minimization of a Rod-Airfoil Configuration (3-D)

NACA0012 airfoil section with
S = 0.5C placed at a distance
� = 0.7C behind the cylinder

U1 = 72m/s, Rec = 4.8⇥ 105

Hybrid mesh with ⇠ 2.8 million
elements with refinement within
permeable FWH surface

Nearfield acoustic source computed
by URANS+SA

Propagation to 3 farfield microphone
positions (r = 100C , ✓ = 45�, 90�

and 135�) using time-domain FWH.

Farfield p0 corresponds to ⇠ 10
cycles of airfoil lift fluctuation
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Optimization History

Surface noise sensitivity in normal direction
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Design Evolution

Does not collapse the airfoil as one would expect
Optimizer introduces streamwise waviness on both upper and lower surfaces
No spanwise variation in surface sensitivities – due to coherent vortices
impinging on the airfoil LE due to URANS simulation
Scale-resolving simulations required to model turbulent wake breakdown
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Aeroacoustic Analysis Based on DDES-FWH
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Sample collection after 50 flow passage times
15000 samples corresponding to ⇠ 40 cycles of lift fluctuations on airfoil
JN reduced by ⇠ 45% (compared to 33% with URANS-FWH)
OASPL: omni-directional noise reduction, up to 6dB

——: Baseline; – – –: Optimized
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Farfield Noise Spectra (R = 100C)
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Peak frequency St = 0.19 well-captured in baseline configuration

Peak SPL reduced by 5-6 dB

Broadband reduction not omni-directional, but at least peak SPL not shifted
towards higher frequency

To minimize broadband noise, JN must be re-defined to target high-frequency
component =) perform optimizations directly with DDES-FWH in the loop

——: Baseline; ——: Optimized
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Summary and Future Work
Current Aeroacoustic Prediction and Optimization Capabilities

2D&3D URANS/DDES-FWH aeroacoustic solver implemented in SU2

Adjoint-based aeroacoustic design optimization enabled by a discrete adjoint
solver based on algorithmic di↵erentiation (AD)

Validation against experiment: tone well-captured; broadband to be improved
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Related Publications
A Discrete Adjoint Framework for Unsteady Aerodynamic and Aeroacoustic Optimization, AIAA-2015-3355

A Discrete Adjoint Approach for Jet-Flap Interaction Noise Reduction, AIAA 2017-0130

Reduction of Airframe Noise Components Using a Discrete Adjoint Approach, AIAA-2017-3658

An E�cient Adjoint-based Framework for Airframe Noise Reduction, AIAA Journal, In Preparation
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Summary and Future Work

Future Work

Further validate the DDES-FWH solver in SU2 via various benchmark cases

Couple SU2 with the NASA-ANOPP2 code for tonal noise reduction of
propeller-wing configurations (joint work with Len Lopes, NASA Langley)

System-level optimization with OpenMDAO (joint work with Justin Gray,
NASA Glenn)

Open Question: What about broadband noise?

Adjoint-based noise minimization to tackle broadband noise – much more
challenging to remove/reduce than tonal noise

Challenge #1: Mesh size for DDES ⇠ O(107�8) for large, complex geometries
Challenge #2: Need for regularization due to chaotic LES content

Synthetic-turbulence-type methods (e.g. SNGR) for noise generation based on
(U)RANS solutions at lower cost (Part II)

Joint work with Lars Davidson’s group at Chalmers University since April 2018
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Adjoint-based Broadband Noise Minimization
using Stochastic Noise Generation
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Motivation

Broadband noise prediction: scale-resolving simulations (DNS, LES or at least
DES) needed to resolve noise source + wave propagation (LEE, APE or FW-H)

For e�cient design optimization, necessary to use adjoint-based methods

A fundamental obstacle: regularization problem encountered in adjoint
computation of scale-resolving simulations (Blonigan and Wang, 2012)

First 3000 �t’s Full Horizon

Figure: Divergence of sensitivities observed in a jet noise application by Oezkaya et al.
(FD: Finite Di↵erence; AD: Algorithmic Di↵erentiation )

A ‘middle-ground’ between RANS-based approaches and scale-resolving
simulations needs to be found
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RANS-SNG Broadband Noise Assessment Framework

Basic Idea

Use stochastic noise generation (SNG) to reconstruct the turbulent velocity field
based on turbulence kinetic energy (TKE) and dissipation rates (✏ or !) estimated
by a preceding RANS computation.

RANS SNG
Noise Propagation

LEE/APE/Acoustic Analogy
Farfield
Noise

TKE, ✏ or ! ~u0 p0

Pioneering work in RANS-SNG by Bechara et al. and Bailly et al. in the 1990s
Method improved by the works of Billson et al., Casalino and Barbarino, and di
Francescantonio et al. in recent years.
Similar idea to the RANS-RPM approach of Ewert et al. at DLR (circa. 2000)

What RANS-SNG Method IS and ISN’T

Fast assessment of broadband noise source characteristics and trends for design
optimization

A method to circumvent the regularization issue plaguing adjoint solutions for
scale-resolving simulations

NOT designed to predict broadband noise to an absolute level
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Stochastic Noise Generation

A space-time turbulent velocity field can be
expressed as a sum of NF random Fourier
modes:

~u (~x , t) = 2
NFX

n=1

ûncos
h
~kn ·

⇣
~x � ~Ut

⌘
+  n

i
~�n

ûn, ~kn,  n and ~�n are statistical velocity
magnitude, wave number vector, phase and
direction associated with the nth Fourier
mode, convecting in a mean velocity ~U

The vector ~kn is generated randomly on a
sphere with radius kn, based on two polar
angles 'n and ✓n

The velocity vector ~�n is constrained to lie in
a plane orthogonal to ~kn with an angle ↵n

The magnitude ûn of each mode is computed
so that the turbulence energy spectrum E(kn)
corresponds to the energy spectrum for
isotropic turbulence, giving:

ûn =
p

E (kn)�kn

Probability distributions of the four random
angles necessary for the stochastic generation
of ~u (~x , t):

P('n) = 1/(2⇡) 0  'n  2⇡
P(✓n) = (1/2)sin(✓n) 0  ✓n  ⇡

P( n) = 1/(2⇡) 0   n  2⇡
P(↵n) = 1/(2⇡) 0  ↵n  2⇡
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Stochastic Noise Generation
The energy spectrum is assumed in the form of Von Kármán-Pao isotropic turbulence
spectrum as

E (k) =
2A

3

K

ke

✓
k

ke

◆4

exp

"
�2

✓
k

k⌘

◆2
#"

1 +

✓
k

ke

◆2
#(�17/6)

K : turbulence kinetic energy

ke = 0.747/LT : wavenumber of the
maximum energy determined by the turbulent
length scale LT from RANS (LT = c1u03/✏,
where u0 =

p
2K/3)

k⌘ = ✏1/4⌫�3/4: wavenumber of the
Kolmogorov scale.

✏: turbulence dissipation rate

Constants A ' 1.453 and c1 = 1.0.

K and ✏ extracted from RANS solution
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Adjoint-Based RANS-SNG Noise Reduction Framework

Un=1,↵
CFD Solver

Un+1 = G(Un)
Stochastic

Noise Generation
JBBN = F (Tij )

U⇤|Vs ~u(~x , t)

Adjoint SNG
Adjoint CFD
Adjoint Mesh

dL
d↵ J̄BBN = 1

@J
@U⇤

���
Vs

U⇤

Ū, X̄

U⇤|Vs

U⇤|Vs : Turbulent flow variables extracted from the user-defined noise source region Vs .

JBBN : a function of stochastically generated Lighthill’s stress tensor (Tij )

@J
@U⇤

���
Vs
: sensitivity of the broadband noise objective with respect to turbulent flow

variables extracted from Vs

Adjoint CFD: Ū = @
@U GT (U,X )Ū + ( @J

@U⇤

���
Vs
)T

The e↵ect of the turbulent flow variables (k, ✏ or !) in the source region Vs on the

broadband noise design objective JBBN is ‘transmitted’ through the term @J
@U⇤

���
Vs
,

which is accumulated to the flow adjoint iterator in evaluating the coupled adjoint of
RANS-SNG
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Airfoil Self-Noise and Design Sensitivities

2-D NACA0012 airfoil

M1 = 0.2
Rec = 6.0⇥ 106

AoA = 8�

RANS solution computed with
SST k � ! turbulence model

Steady aerodynamic results
validated against experiment

TKE and ! extracted from
RANS solution

SNG and sensitivities computed
in the focus region:
x 2 [0.8, 1.5], y 2 [�0.1, 0.15]

Frequency range: 1-5 KHz

Both primal and adjoint
computations implemented in
open-source solver SU2, fully
parallelized.
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TKE, Ti ,j , and Sensitivity Distributions

J BBN = || 1
Vs

1
Nt

NxX

m=1

NtX

n=1

T(~xm, tn)�Vm||Frob

where T = Tij = ⇢uiuj and || · ||Frob is the Frobenius norm of a tensor.

TKE ||T̄ ||Frob @JBBN

@K

While the peak TKE is located in the turbulent boundary layer, the broadband
noise source is actually located further down in the wake and more importantly,
so is the peak sensitivity region
It would not be e↵ective to directly target the high-TKE regions in the
boundary layer.
Shape optimization should be conducted to morph the shape so as to reduce
the TKE in the wake, where the strong quadrupole sources are.
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Coupled-Sensitivity Validation

Pressure Side Suction Side

Airfoil surface parameterized with 18 Hicks-Henne bump functions (9 on each
surface) to enable shape deformation
dJ
dx : design sensitivity of the broadband noise source (as predicted by
RANS-SNG) with respect to the 18 shape design variables

Coupled adjoint sensitivity validated against finite di↵erence (� = 10�6)
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Broadband Noise Source Minimization

Optimization History Design Comparison

Shape parameterized with 484 FFD design variables

Optimization process fully automated in SU2

Broadband noise minimization performed for 30 design iterations, leading to
⇠ 40% reduction in design objective

No apparent loss of aerodynamic e�ciency, even though no aerodynamic
constraints are applied.

Can impose aerodynamic or geometric design constraints.
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Broadband Noise Source Minimization

Baseline Optimized

Comparison: Frobenius norm of the time-averaged Lighthill’s stress tensor in
the trailing-edge region

Shape optimization e↵ectively removes broadband noise source

Peak BBN source (||T̄ ||Frob) reduced by ⇠ 75%

This should be verified by a scale-resolving simulation

Related publication: Towards Adjoint-based Broadband Noise Minimization
using Stochastic Noise Generation, SciTech 2019
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Next Steps

Un=1,↵
CFD Solver

Un+1 = G(Un)
Stochastic

Noise Generation
JBBN = F (Tij)

U⇤|Vs ~u(~x , t)

Adjoint SNG
Adjoint CFD
Adjoint Mesh

dL
d↵ J̄BBN = 1

@J
@U⇤

��Vs

U⇤

Ū, X̄

U⇤|Vs

Compare baseline and optimized configurations in terms of far-field BBN with
LES-FWH solutions (quasi-2D)

SNG for anisotropic turbulence

Wave equation to propagate BBN source to solid/permeable FWH surface for
far-field noise prediction
Application to 3-D cases:

Optimal slat setting for a 30P30N configuration
Optimal shape design for flap side edge noise reduction
Serrated trailing edge design
Engine chevron design for jet noise reduction

Extend to unsteady formulation: URANS-SNG framework for rotor/propeller
broadband noise design
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Future of SU2-CAA

Synergistic Activities

NASA: Rotor/propeller noise reduction and coupling of SU2 with ANOPP2
Collaborators/Users:

Stanford University: DDES+FWH and validation against experiments
Embraer S.A.: jet-flap interaction, propeller noise reduction, etc.
Chalmers: RANS-SNG method for BBN
Polimi: Rotor icing detection via aeroacoustics
TU Cottbus: Wind-tunnel tests for baseline and optimized RANS-SNG designs
TU Berlin: Airfoil trailing-edge noise prediction

SU2 Development Plans and Suggestions

FWH with moving surfaces for rotor/propeller noise

Sliding mesh capability with discrete adjoint

SLSQP optimizer change

LES with explicit SGS (request from users)

Lattice Boltzmann Method

Unsteady aero-structural capabilities
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