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Why do we need high-order schemes?
2nd order schemes have been extremely successful, certainly 

for RANS. SU2 FV is used for many applications…



But…
For some applications 2nd order accuracy may not be sufficient

Examples
• Wake and vortex flows
• Noise prediction
• LES/DNS

High-order solver is intended for 
high-fidelity modeling of the 
turbulence, i.e. LES (wall resolved 
and wall modeled) and DNS



Options to increase the order of accuracy

1: Increase the stencil combined with smoothness indicators => 
WENO-FV  
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2: Increase the polynomial degree inside the element => DG-FEM  



High-Order: SU2 Finite Volume

• Aim: Implementation of high-order schemes within the finite 
volume solver of SU2

• Objectives
– 3rd order MUSCL limiters

• Drikakis-Zoltak

• Michalak & Ollivier-Gooch

– Framework for Weighted Essentially Non-Oscillatory 
Schemes (WENO)

– Use the Double Vortex Pairing Problem to assess the relative 
performance of these schemes



• Mixing layer formed by two co-
flowing streams of water

• Initial velocity perturbations 
inflate forming two distinct 
vortices

• Vortices roll around each other 
eventually merging to form one 
vortical structure

• Chosen as test problem due to 
presence of fine structures and 
discontinuities

(a) 1.0 s (b) 2.0 s

(c) 3.0 s (d) 4.0 s

(e) 5.0 s (f) 6.0 s

Description of Problem: Double Vortex Pairing



(b) SU2: Venkatakrishnan

(c) SU2: Michalak-Ollivier Gooch (d) SU2: Drikakis-Zoltak

Double Vortex Pairing 256x256, M=0.2: Passive Scalar

(a) WENO 11



WENO Outline

• Difficult to achieve orders of accuracy above 3rd order 

using MUSCL based approach on unstructured grids

• Aim: To create a high-order polynomial for target cell 

!" which has the same cell averaged value as the 

reconstructed function u 

• Reconstruction uses cell averaged value from target 

cell !" as well as cell averaged values from multiple 

stencils consisting of neighboring cells

• Two types of stencils

– Central

– Directional

• Number of cells in the stencil scales with desired order 

of accuracy 
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(a) Central Stencil

(b) Directional Stencil 
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• Polynomials are constructed using data from each stencil 

• “Essentially Non-Oscillatory” part stems from non-linear weights 
which are used to determine the smoothness of the solution in each 
stencil

• Central stencil given the largest bias since for smooth solutions the 
central stencil generally is the most accurate

WENO Outline



Current Status
• Geometrical Preprocessing (Commom/src/geometry_structure.cpp)

– Check the mesh to determine which elements can have WENO 
reconstruction

– Central + Directional stencil assembly for triangular elements
– Obtain unique nodes (solution points) from stencil 
– Functions to handle assembly of mesh dependant parameters 
– LAPACK functions used to carry out matrix operations
– Function to determine which two elements share a common edge

• Solution Reconstruction (SU2_CFD/src/solver_direct_mean.cpp)
– MUSCL reconstruction used in region of the grid which cannot have WENO 

reconstruction
– 3rd order WENO reconstruction done for remainder of domain

• Some Issues
– Oscillations present at discontinuities
– ~ 10 - 100 times slower than MUSCL scheme (depending on grid resolution)



Future Work

• Fully Functional in 2D 
– Quadrilateral elements

– Hybrid grids

• Extension to higher-orders ( 4th , 5th etc)

• Full functionality in 3D 
– Requires additional steps in the geometrical preprocessing 

– Data structures require extension to handle the extra necessary 
information

• Add tunable parameters as options to be read from config file

• Parallel implementation

• Performance optimizations! 



System of PDE’s: Weak formulation
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DG-FEM: the basic principles

Integrals are computed with high enough accuracy to prevent
instabilities due to aliasing errors. Computationally intensive!!

However: DG solver can be run very efficiently on modern hardware.
Also hybridized DG techniques to reduce CPU requirements.



Current Capabilities

• Both 2D and 3D, just like SU2-FV

• All standard elements (tri, quad, tet, pyra, prism, hex)

• Curved elements of arbitrary order

• Polynomial order can differ in individual elements

• Symmetric Interior Penalty method for viscous fluxes

• Explicit time integration schemes (Runge-Kutta type)

• Time-accurate local time stepping via ADER-DG

• Preliminary implementation of LES models and shock 
capturing



Shock capturing

• Shock capturing relies on two components:
§ Sensing the discontinuity
§ Resolving the discontinuity

• Sensing the discontinuity:
§ Persson and Peraire : Modal decay
§ Clain, Diot and Loubere : MOOD

• Resolving the discontinuity
§ Limiter
§ Artificial viscosity / filtering
§ Sub-cell limiting

MOOD sensor / Subcell limiting

<Sod’s shock tube problem>

MOOD sensor / Filtering



Shock capturing

• Shock capturing method in DG-FEM
§ Discontinuity sensor : Use the ratio of the norms of 

the highest and the lowest modal coefficients. 
(Extension of Persson’s shock sensor)

§ Resolving method : Use filtering method where the 
filtering strength is determined by sensor value.

• Current status
§ 2D triangular elements up to p = 3
§ Filtering strength can be modified with one input 

parameter



• Transonic flow over NACA0012 airfoil
§ p = 1 | 7,990 triangles | 119 elements on each surface | 238 DOFs on each surface

Shock capturing

Lax-Friedrich, DG Roe, FVM, Venkatakrishnan Slope Limiter



• Transonic flow over NACA0012 airfoil
§ p = 1 | 7,990 triangles | 119 elements on each surface | 238 DOFs on each surface

Shock capturing

Lax-Friedrich, DG Roe, FVM, Venkatakrishnan Slope Limiter



LES Models

• SGS Models
– Constant Smagorinsky

– Wall-Adapting Local 
Eddy Viscosity (WALE)

– More sophisticated 
models to be 
implemented in future
• Dynamic Smagorinsky, 

etc.

• Wall Models
– One-dimensional 

Equilibrium BL Equations!"#" = %"&Δ&| )*|
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Implementation of wall models within the context of DG-FEM solvers.
A. Frére, C. de Wiart, K. Hillewaert, P. Chatelain, G. Winckelmans, Phys 
of Fluids, Jul 2017



Development of Wall-Models

• One-Dimensional Equilibrium 

Model (1DEQM) of Larsson / 

Kawai / Bodart

– Mixing length model with wall-

damping used for turbulent 

viscosity

• Exchange location permitted in large-scale parallel 

computations:

– On any element type on the surface (hexa, tetra, pyramid, 

prism)

– Not necessarily on first element on the surface

• Full parallel search capability (ADT based), all necessary 

communication, and implementation of equilibrium 
WM have now been completed and being tested 

• ADER-DG time-step requirements respected in 
partitioning / search



Wall-Model Validation: Plane Channel 

Flow
• Plane Channel simulations conducted with 

RANS and with resolved LES for comparison 
with WMLES

• Flow Reτ=590

• Friction length lτ=1.7x10-10 m

• Friction velocity uτ=2.53 m/s

• Channel half-height δ=0.1 m

• Domain size = 2πδ x 2δ x πδ

RANS 

Simulation

Mesh: 30x60x30

Results still converging

Resolved LES
Simulation

Mesh: 22x22x22 
P = 3

• Debugging/testing of 

plane channel flow 

with SU2 DG-FEM wall-

modeled LES underway



Performance optimization (with Intel)

• First implementation was very inefficient (< 5% peak on Xeon)

• Collaboration with Intel to improve efficiency
§ Specialized matrix multiplication software (MKL, LIBXSMM)
§ Explicit unrolling of small loops (specialized 2D, 3D code)
§ Vectorization direction matrix multiplication: 128 byte aligned
§ Element-wise operation fusion for vectorization
§ Gemm calls: ≈ 60% peak on Xeon

• Performance entire code: ≈ 35-40% peak on Xeon (single core)

• Hybrid MPI-OpenMP to increase flexibility (about to start)



Performance analysis tools (Intel)



Performance analysis tools (Intel)



Higher-order Grids with Curved Elements 
(with Pointwise, work of Steve Karman)

In-house capability to generate higher-order grids for simple cases.

Pointwise V18.2 will have degree elevation and mesh curving 
capabilities. Available end of September 2018.



Access the code
• feature_hom branch on GitHub is the main branch for 

the DG solver. It is about to be merged with develop.
• Several other development branches exist



Future Work DG-FEM
• Finish Shock Capturing and LES wall models

• LES statistics (common to DDES and URANS)

• Improve boundary conditions (non-reflective)

• Improve time step estimates by eigenvalue analysis of the 
Jacobian matrix (computed with CodiPack)

• Parallel performance optimization, including OpenMP

• Entropy variables

• Hybridized techniques, e.g. Embedded Discontinuous Galerkin
(EDG), to reduce computational requirements

• Implicit algorithms

• Discrete adjoint version

• Verification and Validation (Manufactured solutions)



Results, viscous
Implicit LES, SD 7003 (Reynolds = 60,000)

p = 4, hexahedra


