Unsteady Optimization with SU2: Application to Turbomachinery Design An overview

A. Rubino, M. Pini, N. Anand, S. Vitale, P. Colonna

3rd SU2 Developers Meeting, 17-09-2018 SUII, University of Strathclyde, Glasgow

Outline

- Introduction and past work
- Current status of development
- Outlook and ongoing work
- Conclusions

Introduction Why Unsteady Design?

- Sometimes a "necessity" (e.g. open rotors, rotorcraft, turbomachinery, propellers...)
- A step forward in performance gain over steady design methods
- Pathway to MDO (e.g. fluid-structure, noise, ...)

Introduction

Methods for unsteady optimization in SU2

- Time-domain harmonic balance discrete adjoint
- Time-accurate discrete adjoint
- Time-accurate continuous adjoint

Introduction

Methods for unsteady optimization in SU2

- Time-domain harmonic balance discrete adjoint
- Time-accurate discrete adjoint
- Time-accurate continuous adjoint

• Time derivative \rightarrow Matrix multiplication (time independent!)

Time-Domain Implementation

- Unsteady → Steady State + Source terms
- Solve just for blade passing frequency harmonics
- DFT to obtain interpolated time accurate solution

Introduction

What unsteady design problems can be resolved with SU2 and HB?

ŤUDelft

Thanks to Dr. K Naik

Introduction

What unsteady design problems can be solved with SU2 and HB?

Application: Pitching Airfoil NACA64A010

	Symbol	Value	Units
Mach number	Ma_{∞}	0.78	[-]
Pitching frequencies	$[\omega_1,\omega_2]$	[106.70, 277.42]	[rad/s]

Results Pitching Airfoil NACA64A010

Number input time instances	Input frequencies
5	$0, \pm \omega_1, \pm \omega_2$
7	$0, \pm \omega_1, \pm \omega_2, \pm 2\omega_2$
9	$0, \pm \omega_1, \pm (\omega_2 - \omega_1), \pm 2\omega_1, \pm \omega_2$
11	$0, \pm \omega_1, \pm (\omega_2 - \omega_1), \pm 2\omega_1, \pm \omega_2, \pm (\omega_2 + \omega_1)$

TUDelft

Adjoint-based Shape Optimization Adjoint gradient validation

ŤUDelft

Adjoint-based Shape Optimization Optimization evolution and final shape

ŤUDelft

Adjoint-based Shape Optimization Turbine Cascade Optimization

Optimization History

Baseline vs Optimized Blade Profile

Adjoint-based Shape Optimization Mach contour

ŤUDelft

Previous Limitations

- Single geometrical zone HB-based flow and adjoint solver
- Tested on 2D problems only
- No general turbomachinery multi-row interface (machine type, periodic BC, ...)
- Single-row HB-based shape optimization

Current Status of Development

Unsteady Turbo Interface

- New Turbomachinery Interpolation based on turbovertex data structure
- General for any turbomachinery configuration (e.g. radial, axial, ...)
- Handling periodic BC and periodic grid movement for turbomachinery applications (no phase-lag yet ☺)
- Limited (currently) to 3D structured turbomachinery meshes

Simulation of Radial Turbines

Simulation of Axial Turbines

HB for Multi-Row (Flow + Adjoint)

TimeInstance_0	Stator_1
TimeInstance_1	Stator_1
TimeInstance_2	Stator_1
	GeomZone_0

ŤUDelft

HB for Multi-Row (Flow + Adjoint)

Solver Verified against MP and TA

Adjoint vs FD Gradients

Adjoint memory and CPU time scales ~ $2N_f + 1$

HB Optimization of Turbine Stage

Total-to-Static Efficiency Gain $\rightarrow \sim 2$ Percentage Points

3D Multi-row HB Results

ŤUDelft

Entropy contours

Adjoint-based surface sensitivity

Outlook and Ongoing Work

Current Limitations

- Phase-lag boundary conditions for both HB and TA
- FFD for 3D Turbomachinery Design \rightarrow CAD-based
- Time-accurate adjoint for multi-zone

•

Time Accurate Unsteady Adjoint

TUDelft

Aero-Structure Optimization

Thank you!

