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Why is SU2 based on unstructured grids? 

•  The choice of an underlying unstructured topology in 
SU2 was carefully decided on for several reasons: 
•  Ability to quickly mesh complex (entire aircraft) configurations 
…and… 
•  Ability to perform solution-based mesh adaptation 

•  In the early releases of SU2, a rudimentary mesh 
adaptation code (SU2_MAC) was included and 
exercised in some simple situations 

•  SU2_MAC was rolled into SU2_MSH (in current github 
repository) 

•  But we have not pushed the boundaries in earnest 
•  Time to start doing something about it! 



Grid Adaptation 101 

Geometry 

Baseline 
Mesh 

Adaptation 
Target 



Mesh adaptation approaches 

•  Traditionally based on local gradients of quantities of 
interest: pressure, density, or locally flow-aligned 
gradients such as: 

 

•  Functional-based solution adaption is based on the 
theory of numerical error estimation and is based on 
adjoint formulations (available in SU2!) 

•  Isotropic vs. non-isotropic methods 

•  Inviscid vs RANS 



Mesh adaptation 

Baseline Grid Adapted Grid 

•  Adapt meshes were only where required 
•  Adaption indicator must be constructed carefully 

Choi, Alonso, van der Weide, “Numerical and Mesh Resolution Requirements for Accurate Sonic Boom Prediction” 
AIAA Journal of Aircraft, vol. 46, 2009 



Some previous efforts 

•  Some efforts were pursued to ensure that, during UQ 
simulations, the mesh only had to be adapted once 

•  The adaption estimator ensured that the change in 
numerical error as minimized 
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In the recent past, adjoint methods have been successfully applied in error estimation of integral outputs
(functionals) of the numerical solution of partial differential equations. The adjoint solution can also be used as a grid
adaptation indicator, with the objective of optimally targeting and reducing the numerical error in the functional of
interest below a prespecified threshold. In situations where we seek to quantify the effect of aleatory uncertainties on
statistical moments of the output functional, it becomes necessary to evaluate the functional accurately at multiple
sample points in probability space. If the numerical accuracy of these sample evaluations is not uniform, variations in
thenumerical error canaffect the evaluation of the statisticalmoments.Although it is possible to independently adapt
the meshes to obtain more accurate solutions at each sample point in stochastic space, such a procedure can be both
cumbersome and computationally expensive. To improve the efficiency of this process, a new robust grid adaptation
technique is proposed that is aimed at minimizing the numerical error over a range of variations of the uncertain
parameters of interest about a nominal state. Using this approach, it is possible to generate computational grids that
are insensitive to small variations of the uncertain parameters that can both locally and globally change the solution
and, as a result, the error distribution. This is in contrast with classical adjoint techniques, which seek to adapt the
gridwith the aim ofminimizing numerical errors for a specific flow condition (and geometry). It is demonstrated that
flow computations on these robust grids result in low numerical errors under the expected range of variations of the
uncertain input parameters. The effectiveness of this strategy is demonstrated in problems involving the Poisson
equation and the Euler equations at transonic and supersonic/hypersonic speeds.

Nomenclature
E = flow total energy
F = vector of convective fluxes
H = flow total enthalpy
j = objective function defined on the surface S
M1 = freestream Mach number
n = exterior normal to the surface S
P = static pressure
Ru = residual of the direct problem
Rv = residual of the adjoint problem
S = Euler wall boundary of the physical domain
U = vector of conservative variables
v = flow speed in an inertial Cartesian system of reference
! = angle of attack
"S = infinitesimal deformation of the wall surface
!"W"# = incoming characteristics on the far-field boundary
@n = normal derivative to a curve
@t = tangential derivative to a curve
@! = boundary of the physical domain
# = numerical error in the functional evaluation
u = exact solution of the direct problem

uh = numerical solution of the direct problem in a
numerical grid with average spacing h

$ = flow density
v = exact solution of the adjoint problem
vh = numerical solution of the adjoint problem in a

numerical grid with average spacing h
’ = adjoint velocity vector
" = vector of Lagrange multipliers of the flow equations
! = physical domain

I. Introduction

A N IMPORTANT aspect of uncertainty quantification (UQ) in
predictive simulations involves the propagation of the effect of

variability in input and system parameters (hereafter referred to as
input parameters or random input parameters) on system outputs of
interest, where we assume that the variability in the input parameters
can be represented by known probability distributions. In such
exercises, one is typically interested in the statistical moments of an
output functional within the space of random input parameters. The
nonintrusive approach [1–3] to UQ involves sampling of the
governing equations in stochastic space. Because of variations in the
input parameters and the resulting changes in the magnitude,
distribution, and character of the solution of the governing equations,
the numerical accuracy of these sample evaluations is not uniform,
and significant errors could appear in the evaluation of the statistical
moments of the outputs. An obvious strategy for coping with this
problem would be to apply adjoint-based error estimation and mesh
adaptation at every sample point [4–10] so that the numerical errors
for all functional evaluations are kept below an acceptable threshold.
However, such a procedure can be both cumbersome and
computationally expensive. New approaches that can retain the
accuracy of such an approach but with much lower computational
effort are sought in this paper.

In this work, we propose a robust grid adaptation technique, which
is aimed at minimizing the numerical discretization error over small
variations of the input parameters around a baseline flow state. In this
approach, computational grids are generatedwith the knowledge that
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Recent Efforts 

•  Recently we have been collaborating with INRIA (Gamma 
group, Adrien Loseille) to leverage their AMG adaptation 
library 

•  Pursued 2 separate geometry tools for point projection: 
•  GE Lite library from Pointwise 
•  EGADS (Engineering Geometry Aircraft Design 

System) from Haimes / Dannenhoffer 

•  Functional prototype in place being improved over the next 
6 months 

•  Final objective is to be able to do shape optimization with 
mesh adaptation in the loop 



SU2/AMG mesh adaptation process 
Mesh adaptation : a non-linear problem where 

both the mesh and the solution are converged 
to an optimal state. 

Mesh sizes are progressively increased at each 
iteration. 

Example: 3D supersonic wedge: 
 
 
 

Solution 
computation

Metric
computation

Mesh
generation

Solution 
interpolation

AMG

SU2

Required tools: 
•  SU2_CFD: performs the flow simulation 
•  AMG (INRIA) : computes a metric from the solution, remeshes, and 

interpolates the solution onto the new adapted mesh 
•  mesh_adaptation.py: automates the entire mesh adaptation process by 

executing SU2 and AMG according to a simple configuration file 

Iter 1 Iter 3 



AMG/SU2 interface 
% ------- MESH ADAPTATION PARAMETERS ------ 
 
% Desired mesh sizes (appr. number of vertices) 
ADAP_mesh_sizes= (1e6, 2e6) 
 
% Number of sub-iterations for each mesh size 
ADAP_SUBITE= (3, 3) 
 
% Use an initial solution? (YES or NO) 
ADAP_RESTART= NO 
% Name of the initial mesh 
ADAP_INI_MESH_FILE= m6_wing.meshb 
% (if YES) name of the initial SU2 restart solution 
ADAP_INI_RESTART_FILE= m6_wing_restart.solb 
% (if YES) name of the initial sensor solution 
ADAP_INI_SENSOR_FILE= m6_wing_mach.solb 
 
% Surface reprojection (CAD/BACK_MESH/NONE) 
ADAP_PROJ_METHOD= CAD 
% If not NONE, specify the name of the cad model/back mesh file 
ADAP_BACK_NAME= m6_wing_cad.iges 
 
% Maximal edge sized allowed through the mesh adaptation 
ADAP_HMAX= 70 
% Minimal edge size 
ADAP_HMIN= 0.00001 
% Required mesh gradation 
ADAP_HGRAD= 1.3 

config.cfg 

$ python mesh_adaptation.py –f config.cfg

Specific parameters to be added to the 
configuration file: 
 
•  Mesh sizes: what approximate 

numbers of vertices are wanted at 
each iteration? How many sub-
iterations for each mesh size? 

•   Metric computation parameters: 
which sensor? What error estimate? 

•  Surface re-projection: use a CAD 
(GELite or EGADS?) representation 
of the geometry? Or a fine 
background mesh?  

•  Remesher: minimal/maximal edge 
sizes, gradation etc. 

Command line: 



Adaptive remesher: AMG (Inria)  

Capabilities: 
o  Anisotropic remeshing through local modifications of the mesh [Loseille 

and Menier, IMR 2013] 

o  Metric computation 
o  Metric field correction using anisotropic gradation 
o  Solution interpolation 
o  Parallel anisotropic mesh adaptation: 1 billion tetrahedra in less than 

20 minutes on 120 cores. [Loseille, Menier, Alauzet, IMR 2015] 



Nozzle Aero-Thermal-Structural Design 
Inspired by the X-47B aircraft 

§  Unmanned combat vehicle aircraft 
demonstrator 

§  Capable of carrier take-off and 
landing 

§  Complex nozzle shape integrated 
into aft end of vehicle 

§  Advanced materials and significant 
heat environment and thermal 
management issues 

§  Nozzle weight is a significant 
portion of the overall propulsion 
system weight 

§  Uncertainties in all areas of multi-
physics problem 

 

Empty weight (kg) 6,350 

TOGW (kg) 20,215 

L/D cruise 12.6 - 15.6 

Top speed High subsonic 

Service ceiling (ft) 40,000 

Engine type F100-PW-20 

IHS Jane’s Unmanned Aerial Vehicles and Targets, 2015 
Ferguson et al, Virginia Tech X-47 A/B student presentation, 2015 
bottom image: Northrop Grumman X-47B UCAS Data-sheet, 2015 



DARPA EQUiPS Nozzle Problem 

•  Adapted mesh and solution 

•  Baseline mesh and solution 

Hessian-based mesh adaptation of the Mach number. 
Using SU2 and AMG  
10 adaptive iterations, 20 minutes on a laptop 



Example : X-47B 



ONERA M6 wing 
•  Baseline mesh 

•  Adaptation 



CRM : baseline 



CRM: adapted 



Supersonic aircraft design 
Surface drag and lift sensitivities using the adjoint method 

Magnitude of surface sensitivity represents changes in cost function caused 
by changes in geometry. 

Designers can use this sensitivity information to determine appropriate 
parameterizations of the configuration prior to optimization. 

Drag sensitivity (Mach 1.6, AoA 2.3deg) Lift sensitivity (Mach 1.6, AoA 2.3deg) 



Sonic boom prediction  

GROUND

Domain size:
up to 20 km

Mesh size required:
 30cm to 1mm

Length ~ 15 to 40 m

Shock wave 
propagation

Without mesh adaptation :  
   1m precision è 200 Billion DoF 

 
Using mesh adaptation  

 è 0.1 Billion DoF 
 

The problem complexity is decreased by 3 orders of magnitude 
just by modifying the discretization. 



On-going: mesh adaptive shape optimization 
Optimal shape algorithm coupled with mesh adaptation: 
o  The quantities of interest are computed on adapted meshes. 
o  A mesh adaptation loop is embedded inside each optimizer iteration. 

•  Preliminary work : optimal shape of a CRM wing   
•  CAD model created from scratch 

using EGADS. 
•  Comparison of surface projection 

methods (EGADS, GELite). 
•  Feature-based and goal-oriented 

mesh adaptation. 

•  On-going: Design Under Uncertainty of a Nozzle geometry 



https://github.com/su2code 

https://su2.stanford.edu 




