
Development of a High-Order Discontinuous Galerkin
Fluid Solver Within SU2

Edwin van der Weide
Department of Mechanical Engineering

University of Twente

Thomas D. Economon, Juan J. Alonso, Jae hwan Choi, Carlos da Silva
Department of Aeronautics and Astronautics

University of Stanford

Dheevatsa Mudigere, Alexander Heinecke, Gaurav Bansal
Intel Corporation

Ramesh Balakrishnan
Argonne National Laboratory

Outline

• Motivation for high order schemes

• Pros and cons of different discretization techniques

• DG-FEM, the basic principles

• Implementation in SU2

• Performance optimization

• High order grid generation

• Preliminary results

• Next things to be done

Why do we need high order schemes?

2nd order schemes have been extremely successful,

certainly for RANS applications

But

For some applications 2nd order accuracy may not be enough

Examples

• Wake and vortex flows

• Noise prediction

• LES/DNS

ALCF Theta Early Science Program

Collaboration Stanford – Argonne

Scale Resolving Simulations of Wind Turbines with SU2

Horns Rev wind farm (Denmark)

Wakes must be resolved
Ideally suited for high order schemes

Spatial discretization methods for hyperbolic systems
(most commonly used)

• Finite Difference Method (FDM)

• Finite Volume Method (FVM)

• (Discontinuous Galerkin) Finite Element Method (DG-FEM)

Pros and cons of the methods

Taken from Hesthaven and Warburton, 2008

: Not suited

: Suited

: Suited, possibly with modifications, but not the most natural (or efficient) choice

2nd order: FVM is the best choice
High order: DG-FEM is the best choice

Hyperbolic system of PDE’s
Weak formulation

 0

i

i

x

F

t

U

pk

k

mi

V

i

i

k

m

V

i

k

m

V

NmdnFdV
x

FdV
t

U

kkk

,,1,0

 i
k

j

N

j

k

ji xUxUk
p

1

 :Element

Nodal DG-FEM: the basic principles (1)

Contribution from the contour integral

 k

k

mi

V

RLik

k

mi

V

i dnUUFdnF

kk

 ,

Nodal DG-FEM: the basic principles (2)

Solution at the interfaces is multiply defined and discontinuous

Riemann problem: Any approximate Riemann solver can be used =>
stabilizes the discretization

1st order DG-FEM equals 1st order FVM!!!

Nonlinear equations and/or curved elements

Nodal DG-FEM: the basic principles (3)

Integrals must be computed with high order
quadrature rules to avoid aliasing.

Expensive!!!

Discontinuous basis functions not suited => must be repaired
Even more expensive!!!

However: most operations are local to an element.
Extremely well-suited for modern computer hardware

Diffusion problems, 2nd derivatives

Implementation in SU2 (1)
together with Tom

• Framework of SU2 is very flexible => high level data

structures can be used for any solver, so also DG-FEM

• Input parameter structure can be reused entirely

• FVM output functionality could be reused (after some

modifications)

• Still a lot of work was required for other low level functions

• Partitioning of the grid (element wise)

• Preprocessing is completely different from FVM

• Standard elements and standard orientation of elements

are introduced (see next slide)

• Spatial discretization is completely new

Implementation in SU2 (2)

Tricky part: Relative orientation of elements
Needed for the discretization of the viscous terms

2D hybrid grid: 37 different cases
3D hybrid grid: 248 different cases

Solution: Renumber connectivity of adjacent elements for each face.
Similar to the CGNS transformation matrix between blocks.

=> One general implementation for the contour integral

Performance optimization (1)
Collaboration with Intel

• Target architectures: Intel Knights Landing (MIC architecture)

Intel Xeon

• Hybrid MPI/OpenMP parallelization

• MPI

• Domain decomposition (one halo layer of elements)

• Overlap computation and communication

• Use of persistent communication

• OpenMP

• Aim: Parallelization on the for-loop level (sufficient for tests on Xeon)

• Current data structures are designed for this approach

• Optimized BLAS/LAPACK/LIBXSMM functions must be used to get

good performance for matrix multiplications

• Large contiguous chunks of memory for data storage (not the case

for the FVM solver)

Performance optimization (2)

Motivation for hybrid parallelization approach
Flat MPI does not seem to work too well on KNL

Preliminary results on Theta (Argonne)

Elem/Core 122 244 407 1.22K 4.88K 19.5K 39.1K

DOF/Core 4.27K 8.55K 14.2K 42.7K 0.17M 0.68M 1.37M

Efficiency(%) 58.4 70.6 86.6 91.0 99.2 100 N/A

High order grid generation (1)

High order elements must be curved near solid wall boundaries

High order grid generation (2)

• Two possibilities

• Truly high order grid generation

• Post processing of linear grids => seems to be the preferred choice

• Not a lot of activity from commercial vendors

• Centaursoft: Quadratic elements via post processing

• Pointwise in collaboration with several universities (including us)

• Open source software

• Gmsh

A lot more effort should be put into high order grid
generation in order not to become a show stopper !!

High order grid generation within SU2
Collaboration with Pointwise

• Post processing of linear grids (quality linear grid is crucial)

• Geometry kernel of Pointwise (GE Lite) is used for projection onto

the CAD geometry

• Correction due to surface projection is propagated into the domain

• Heuristic algorithm (only for structured normal direction): very fast

• SU2 mesh deformation algorithm: works for all element types

• Works very well for not too complicated geometries

• To be tested for really complicated cases (problems expected)

Preliminary results (p = 4, triangles, inviscid)
Visualization via linear sub-elements, not high order

Preliminary results, inviscid
Visualization via linear sub-elements, not high order

p = 3, tets p = 4, triangles

Preliminary results (p = 4, quads/triangles, viscous)
Visualization via linear sub-elements, not high order

Next things to be done

• Finalize debugging viscous terms (almost ready)

• Thorough V&V of the implementation

• Binary, parallel IO

• Shock capturing

• Time accurate local time stepping

• LES models and boundary conditions, including wall models

• Performance optimization, including OpenMP parallelization

• Grid motion, sliding mesh interfaces

• Grid sequencing, multigrid

• High order grid generation

