Non-linear Elasticity with Multiple Materials

Written by for Version Revised by Revision date Revised version
@rsanfer 7.0.2 @rsanfer 2020-01-30 7.0.2
At one glance:
Solver:
Elasticity
Uses:
SU2_CFD
Prerequisites:
Non-linear Elasticity
Complexity:
Intermediate

Goals

Once completed the tutorial on Nonlinear Elasticity, we can move on to more advanced features. This document will guide you through the setup of a non-linear problem with multiple material definitions.

In this tutorial, we use the same problem definition as for the nonlinear elasticity tutorial: a vertical, slender cantilever, clamped in its base, and subject to a horizontal, follower load on its left boundary. However, in this section, we will discretize the cantilever into four regions, R0, R1, R2 and R3,

ProblemSetup

Resources

You can find the resources for this tutorial in the same structural_mechanics/cantilever folder in the Tutorials repository. You can reuse the mesh file mesh_cantilever.su2 from the Non-linear Elasticity tutorial, but you will need a new config file, config_nonlinear_multimaterial.cfg, and an element properties file, element_properties.dat

Background

SU2 has been designed using a finite-deformation framework to account for geometrical and material non-linearities. We can write the non-linear structural problem via the residual equation

which has been obtained from the weak formulation of the structural problem defined using the principle of virtual work and discretized using FEM.

In a Finite Element framework, it is normally possible to define different properties for each element. In this tutorial, we will exemplify the ability of SU2 to deal with this kind of problems.

Configuration File Options

The first thing required to deal with multiple materials, is to add the command

FEA_FILENAME = element_properties.dat

that defines the name of the element-based input file for material definition. This file has the format

INDEX MPROP
0     0
1     0
...
249   0
250   1
...
499   1
500   2
...
749   2
750   3
...
999   3

where the fields, that must be separated by tabs, are:

  • INDEX corresponds to the element ID number from the mesh file.
  • MPROP sets the material properties. In this case, the Young’s modulus and the Poisson ratio are:
    • 0: = 80 GPa, = 0.4
    • 1: = 10 MPa, = 0.35
    • 2: = 50 GPa, = 0.4
    • 3: = 0.5 MPa, = 0.35

The regions R0, R1, R2 and R3 are assigned the MPROP 0, 1, 2 and 3 respectively, using the config options

ELASTICITY_MODULUS = (8.0E10, 1.0E7, 5.0E10, 5.0E5)
POISSON_RATIO = (0.4, 0.35, 0.4, 0.35)

Finally, given the flexibility of the regions R1 and R3, an incremental approach with 10 increments is adopted.

Running SU2

Follow the links provided to download the config, mesh and element_properties files. Execute the code with the standard command

$ SU2_CFD config_nonlinear_multimaterial.cfg

which will show the following convergence history:

+-----------------------------------------------------------------------------+
|  Inner_Iter|     Load[%]|      rms[U]|      rms[R]|      rms[E]|    VonMises|
+-----------------------------------------------------------------------------+
|           0|     100.00%|   -1.331677|   -0.001635|   -2.028421|  1.0799e+06|
|           1|     100.00%|   -1.913135|    6.972674|    3.447084|  1.0925e+06|

Incremental load: increment 1
+-----------------------------------------------------------------------------+
|  Inner_Iter|     Load[%]|      rms[U]|      rms[R]|      rms[E]|    VonMises|
+-----------------------------------------------------------------------------+
|           0|      10.00%|   -2.331677|   -1.001635|   -4.028421|  1.0799e+05|
|           1|      10.00%|   -3.953012|    5.031711|   -0.519843|  1.0811e+05|
|           2|      10.00%|   -5.865271|    2.061363|   -6.461089|  1.0801e+05|
|           3|      10.00%|   -4.917638|   -1.802157|   -9.113119|  1.0815e+05|
|           4|      10.00%|   -7.297420|    0.015521|  -10.552833|  1.0815e+05|
|           5|      10.00%|   -8.662326|   -5.220135|  -16.527473|  1.0815e+05|
|           6|      10.00%|  -10.815817|   -6.023510|  -20.970444|  1.0815e+05|

...

Incremental load: increment 10
+-----------------------------------------------------------------------------+
|  Inner_Iter|     Load[%]|      rms[U]|      rms[R]|      rms[E]|    VonMises|
+-----------------------------------------------------------------------------+
|           0|     100.00%|   -2.283509|   -0.993242|   -3.982743|  1.0465e+06|
|           1|     100.00%|   -3.756525|    5.121588|   -0.339856|  1.0346e+06|
|           2|     100.00%|   -3.896361|    2.241346|   -6.029630|  1.0345e+06|
|           3|     100.00%|   -3.627203|    1.451203|   -6.004211|  1.0324e+06|
|           4|     100.00%|   -4.983506|    2.651319|   -5.278535|  1.0327e+06|
|           5|     100.00%|   -3.331444|    0.181474|   -5.953341|  1.0275e+06|
|           6|     100.00%|   -4.756347|    3.176148|   -4.231894|  1.0285e+06|
|           7|     100.00%|   -5.265075|   -1.650930|   -9.520310|  1.0285e+06|
|           8|     100.00%|   -6.374912|   -0.472377|  -11.419412|  1.0285e+06|
|           9|     100.00%|   -7.163173|   -2.954409|  -13.740312|  1.0285e+06|
|          10|     100.00%|   -7.779284|   -4.698500|  -14.967597|  1.0285e+06|
|          11|     100.00%|   -8.401311|   -5.725573|  -16.209560|  1.0285e+06|
|          12|     100.00%|   -9.025030|   -5.856932|  -17.456694|  1.0285e+06|
|          13|     100.00%|   -9.649048|   -5.830228|  -18.704672|  1.0285e+06|
|          14|     100.00%|  -10.273113|   -5.868586|  -19.952520|  1.0285e+06|
|          15|     100.00%|  -10.897181|   -5.857269|  -21.195730|  1.0285e+06|
|          16|     100.00%|  -11.521238|   -5.879621|  -22.365896|  1.0285e+06|
|          17|     100.00%|  -12.145524|   -5.909298|  -23.057966|  1.0285e+06|
|          18|     100.00%|  -12.769967|   -5.910878|  -23.152629|  1.0285e+06|
|          19|     100.00%|  -13.393813|   -5.839072|  -23.069515|  1.0285e+06|

The code is stopped as soon as the values of rms[U], rms[R] and rms[E] are below the convergence criteria set in the config file, although for some increments it reaches the maximum number of iterations (20). This is due to the ill conditioning of the matrix of the problem because of the large differences in stiffness between regions.

The displacement field obtained in nonlinear_multimaterial.vtk is shown below:

Nonlinear Multimaterial Results

where it can be observed how the flexible regions undergo large deformations, while the regions R0 and R2 remain virtually unaltered due to their high stiffness. The highlighted elements correspond to the interfaces between R1, R2, R3 and R4.

References

Bonet, J. and Wood, R.D. (2008), Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press

Attribution

If you are using this content for your research, please kindly cite the following reference (reference in the text above) in your derived works:

Sanchez, R. et al. (2018), Coupled Adjoint-Based Sensitivities in Large-Displacement Fluid-Structure Interaction using Algorithmic Differentiation, Int J Numer Meth Engng, Vol 111, Issue 7, pp 1081-1107. DOI: 10.1002/nme.5700

This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons Licence



Improve this page